VISUAL QUICKSTART GUIDE

Get up and running in no time!

Register your book for
free video training!
www.peachpit.com/register

Downloadable examples from the companion Web site!

HTMLS
and CSS3

Seventh Edition

ELIZABETH CASTRO « BRUCE HYSLOP

@® LEARN THE QUICK AND EASY WAY!

QUICKSTART

HTMLS
and CSS3

Seventh Edition

ELIZABETH CASTRO ¢ BRUCE HYSLOP

@ Peachpit Press

HTMLS5 and CSS3, Seventh Edition: Visual QuickStart Guide
Elizabeth Castro and Bruce Hyslop

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.

To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2012 by Elizabeth Castro and Bruce Hyslop

Editor: Clifford Colby

Development editor: Robyn G. Thomas

Production editor: Cory Borman

Compositor: David Van Ness

Copyeditor: Scout Festa

Proofreader: Nolan Hester

Technical editors: Michael Bester and Chris Casciano
Indexer: Valerie Haynes Perry

Cover design: RHDG/Riezebos Holzbaur Design Group, Peachpit Press
Interior design: Peachpit Press

Logo design: MINE™ www.minesf.com

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

bart.gov screen shots courtesy of San Francisco Bay Area Rapid Transit District (BART).
css3generator.com screen shots courtesy of Randy Jensen.

dribbble.com screen shots courtesy of Dan Cederholm.

fontsquirrel.com screen shots courtesy of Ethan Dunham.

foodsense.is screen shots courtesy of Julie Lamba.

modernizr.com screen shots courtesy of Faruk Ates.

namecheap.com screen shots courtesy of Namecheap.

Notice of Liability

The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been taken
in the preparation of the book, neither the authors nor Peachpit shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-71961-4
ISBN-10: 0-321-71961-1

987654321

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

To family.

Acknowledgments

Writing the acknowledgments is one of
the most daunting challenges of working
on a book, because you want to be sure

to convey your appreciation of everyone
properly. This book is the result of the
support, tireless work, and good spirits of a
lot of people. | hope to do them all justice,
and | hope that you’ll indulge me for a bit
while | thank them.

A most sincere thank you goes out to:

Nancy Aldrich-Ruenzel and Nancy Davis,
for entrusting me with this edition of a
book that has been important to Peachpit
for many years.

Cliff Colby, for recommending me and mak-
ing this possible; for his confidence in me
and his patience, flexibility, and guidance;
and for countless conversations and lots

of laughs.

Robyn Thomas, for her tremendous effort
in keeping us all on track, wrangling count-
less documents, making thoughtful edits
and suggestions, and providing regular
words of encouragement, which were
always a boost.

Michael Bester, for all the spot-on feed-
back and suggestions, catching technical
errors and omissions, and helping us get
the right message across to readers. It
was a real pleasure working with him on
another book.

Chris Casciano, in the same vein, for all
your technical expertise, suggestions, and
crucial feedback. | really appreciated your
joining us in the final weeks; we were lucky
to have you.

Cory Borman, for expertly overseeing the
production of the book and creating dia-
grams in a pinch, and for his good humor.

Scout Festa, for carefully correcting gram-
mar and punctuation, tightening up lan-
guage, ensuring the accuracy of figure and
chapter references, and, overall, providing
an all-important level of polish.

David Van Ness, for his great care laying
out the pages and for his proficiency and
attention to detail.

Nolan Hester, for lending his expertise to
the effort of reviewing the laid-out pages.

Valerie Haynes Perry, for handling the criti-
cal task of creating an effective index on
which readers will rely time and again.

The numerous marketing, sales, and other
folks at Peachpit for working behind the
scenes to make the book successful.

My family and friends, for checking in on
my progress and providing occasional, wel-
come breaks from writing. Thanks to those
friends in particular who probably tired of
hearing me say often that | couldn’t get
together, but who kept asking anyway.

Robert Reinhardt, as always, for getting me
started in writing books and for his guid-
ance as | was embarking on this one.

The Web community, for your innovations
and for sharing your knowledge so that
others may benefit (I've cited many of you
throughout the book).

To you readers, for your interest in learning
about HTML and CSS and for selecting this
book; | know you have a lot of others from
which to choose. | hope the book serves
you well.

iv Acknowledgments

Thank you so much to the following con-
tributing authors. Readers have a more
valuable book because of your efforts, for
which I'm grateful. I'd also like to extend my
apologies to Erik Vorhes that we weren’t
able to fit Appendixes A and B in the book.
Readers who see them on the book’s site
will surely appreciate your work.

In alphabetical order by last name, the
contributing authors are:

Scott Boms (Chapter 14)

Scott is an award-winning designer, writer,
and speaker who has partnered with orga-
nizations such as PayPal, HSBC, Hyundai,
DHL, XM Radio, Toronto Life magazine,
and Masterfile during his more than 15
years of working on the Web. When he’s
away from the computer, you might find
him shooting Polaroids; playing drums with
his band, George; or enjoying time with
his wonderful wife and two children. He’s
@scottboms on Twitter.

lan Devlin (Chapter 17)

lan Devlin is an Irish Web developer, blog-
ger, and author who enjoys coding and
writing about emerging Web technologies
such as HTML5 and CSS3. In addition to
front-end development, lan also builds
solutions with back-end technologies such
as .NET and PHP. He has recently written
a book, HTML5 Multimedia: Develop and
Design (Peachpit Press, 2011).

Seth Lemoine (Chapters 5 and 16)

Seth Lemoine is a software developer and
teacher in Atlanta. For over ten years, he’s
worked on challenging projects to see
what’s possible, with technologies from
HTML, JavaScript, and CSS to Objective-C
and Ruby. Whether it’s finding innovative
ways to teach HTML5 and CSS to his stu-
dents or perfecting a Schezuan recipe in his
outdoor wok, being creative is his passion.

Erik Vorhes (Appendixes A and B,
available on the book’s Web site)

Erik Vorhes creates things for the Web with
VSA Partners and is managing editor for
Typedia (http://typedia.com/). He lives and
works in Chicago.

Brian Warren (Chapter 13)

Brian Warren is a senior designer at Happy
Cog in Philadelphia. When he’s not writing
or designing, he spends his time playing
with his beautiful family, listening to music,
and brewing beer. He blogs, intermittently,
at http://begoodnotbad.com.

And, finally, I'd like to extend a special
thank you to Elizabeth Castro. She created
the first edition of this book more than

15 years ago and nurtured her audience
with each edition that followed. Her style
of teaching has resonated with literally
hundreds of thousands of readers over the
years. I'm extremely grateful for the oppor-
tunity to be part of this book, and | was
very mindful of doing right by both it and
readers while working on this edition.

—Bruce

Acknowledgments v

http://typedia.com/
http://begoodnotbad.com

Contents at a Glance

Acknowledgments iv

Introduction L. XV
Chapter1 Web Page BuildingBlocks 1
Chapter 2 Working with Web Page Files 25
Chapter3 Basic HTML Structure 41
Chapterd Text 99
Chapter5 Images........ 147
Chapter6 Links 165
Chapter7 CSSBuildingBlocks 179
Chapter 8 Working with Style Sheets 197
Chapter9 Defining Selectors 213
Chapter 10 Formatting Text with Styles 241
Chapter 11 Layoutwith Styles. 275
Chapter 12 Style Sheets for Mobile to Desktop 327
Chapter 13 Working withWeb Fonts 353
Chapter 14 EnhancementswithCSS3 371
Chapter15 Lists............. 397
Chapter16 Forms. 417
Chapter 17 Video, Audio, and Other Multimedia 449
Chapter18 Tables 489
Chapter 19 Working with Scripts 497
Chapter 20 Testing & Debugging Web Pages 505
Chapter 21 Publishing Your Pages onthe Web 521

Index 529

vi Contents at a Glance

Table of Contents

Acknowledgments L. iv
Introduction XV
HTMLand CSSinBrief XVi
Progressive Enhancement: A Best Practice XViii
Is ThisBookforYou? XX
How This BookWorks. XXii
CompanionWebSite XXiv
Chapter1 Web Page Building Blocks 1
ABasicHTMLPage 3
Semantic HTML: Markup with Meaning. 6
Markup: Elements, Attributes, and Values 13
A Web Page’'s TextContent 16
Links, Images, and Other Non-Text Content 17
FileNames 19
URLS 20
Key Takeaways. 24
Chapter 2 Working with Web Page Files 25
Planning YourSite., 26
CreatingaNewWebPage 28
Saving YourWebPage 30
Specifying a Default Page or Homepage. 33
EditingWebPages 35
OrganizingFiles 36
Viewing Your PageinaBrowser. 37
The Inspirationof Others. 39
Chapter3 Basic HTML Structure 11
Starting Your WebPage 43
CreatingaTitle., 46
CreatingHeadings 48
Understanding HTML5’s Document Outline 50
GroupingHeadings L. 58
Common Page Constructs 60

Table of Contents vii

Chapter 4

Chapter 5

CreatingaHeader. L. 61

Marking Navigation 64
CreatinganArticle, 68
Defininga Section. Lo 72
SpecifyinganAside. oL L oL 75
CreatingaFooter 80
Creating Generic Containers. 84
Improving Accessibility with ARIA. 88
Naming Elements witha ClassorID. 92
Adding the Title Attribute to Elements 95
AddingComments oL, 96
Text 99
Startinga New Paragraph 100
Adding Author Contact Information. 102
CreatingaFigure 104
SpecifyingTime oo 106
Marking Important and Emphasized Text. 110
Indicating a Citation or Reference. 112
QuotingText. 13
Highlighting Text 16
Explaining Abbreviations. L. 118
DefiningaTerm 120
Creating Superscripts and Subscripts. 121
Noting Edits and Inaccurate Text 124
MarkingUpCode 128
Using Preformatted Text 130
Specifying FinePrint 132
CreatingalineBreak. 133
CreatingSpans, 134
OtherElements 136
Images 147
AboutImagesfortheWeb 148
Gettinglmages Lo 152
Choosinganlmage Editor 153
SavingYourlmages.o 154
Inserting ImagesonaPage 156
Offering Alternate Text 157
Specifyinglmage Size oL, 158
Scaling Images withthe Browser 160

viii

Table of Contents

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Scaling Images with anImage Editor 161

Adding Icons for Your Web Site 162
Links 165
The Anatomyofalink 166
Creating a Link to Another Web Page. 167
CreatingAnchors oL 172
Linking to a SpecificAnchor 174
Creating Other Kinds of Links 175
CSS BuildingBlocks 179
Constructinga StyleRule. 181
Adding Commentsto StyleRules 182
The Cascade: When Rules Collide. 184
A Property’sValue. 188
Working with Style Sheets 197
Creating an External StyleSheet 198
Linking to External Style Sheets. 200
Creating an Embedded Style Sheet. 202
ApplyingInlineStyles. 204
The Importance of Location 206
Using Media-Specific Style Sheets 208
Offering Alternate Style Sheets 210
The Inspiration of Others: CSS. 212
Defining Selectors 213
Constructing Selectors 214
Selecting Elementsby Name 216
Selecting Elements by ClassorID. 218
Selecting Elementsby Context 221
Selecting Partofan Element. 227
Selecting Links Based on Their State. 230
Selecting Elements Based on Attributes 232
Specifying Groups of Elements 236
Combining Selectors 238
SelectorsRecap. L. 240

Table of Contents

ix

Chapter 10 Formatting Text with Styles 241

Chapter 11

Choosinga FontFamily. 243
Specifying Alternate Fonts. 244
Creatingltalics. 246
Applying Bold Formatting 248
Settingthe FontSize L. 250
Setting the LineHeight 255
Setting All Font ValuesatOnce 256
Settingthe Color 258
Changing the Text’'s Background 260
ControllingSpacing. 264
AddinglIndents oL 265
Setting White Space Properties 266
AligningText. L 268
ChangingtheTextCase 270
UsingSmallCaps 271
DecoratingText 272
Layout with Styles 275
Considerations When Beginninga Layout 276
StructuringYourPages 279
Styling HTML5 Elements in Older Browsers 286
Resetting or Normalizing Default Styles 290
TheBoxModel. 292
Changingthe Background 294
Setting the Height or Width for an Element 298
Setting the Margins around an Element 302
Adding Padding around an Element. 304
Making ElementsFloat 306
Controlling Where Elements Float. 308
SettingtheBorder. oL 31
Offsetting Elements in the Natural Flow 314
Positioning Elements Absolutely 316
Positioning Elementsin3D. 318
Determining How to Treat Overflow. 320
Aligning Elements Vertically 322
ChangingtheCursor 323
Displaying and Hiding Elements. 324

x Table of Contents

Chapter 12 Style Sheets for Mobile to Desktop 327

Mobile Strategies and Considerations 328
Understanding and Implementing Media Queries. . . 333
Building a Page that Adapts with Media Queries . . . 340
Chapter 13 Working withWeb Fonts 353
WhatlsaWebFont?. 354
Whereto FindWeb Fonts. 356
Downloading Your FirstWeb Font. 358
Working with @font-face 360
Styling Web Fonts and Managing File Size. 365
Chapter 14 EnhancementswithCSS3 371
Understanding Vendor Prefixes 373
A Quick Look at Browser Compatibility. 375
Using Polyfills for Progressive Enhancement 376
Rounding the Corners of Elements 378
Adding Drop ShadowstoText. 382
Adding Drop Shadows to Other Elements 384
Applying Multiple Backgrounds 388
Using Gradient Backgrounds 390
Setting the Opacity of Elements. 394
Chapter15 Lists. 397
Creating Ordered and Unordered Lists. 398
Choosing YourMarkers. 401
Choosing Where to Start List Numbering. 403
Using CustomMarkers 404
Controlling Where MarkersHang 406
Setting All List-Style PropertiesatOnce 407
StylingNested Lists. 408
Creating DescriptionLists 412
Chapter16 Forms 417
CreatingForms oL L. 419
ProcessingForms L. 421
Sending Form DataviaEmail. 424
Organizing the Form Elements. 426
Creating TextBoxes. 428

Table of Contents xi

Chapter 17

Creating PasswordBoxes
Creating Email, Telephone, and URL Boxes
Labeling FormParts.
Creating RadioButtons.
Creating SelectBoxes
Creating Checkboxes.
Creating TextAreas.
Allowing Visitorsto Upload Files
CreatingHidden Fields
Creating a SubmitButton.
Using an Image to SubmitaForm
Disabling FormElements.
New HTML5 Features and Browser Support.

Video, Audio, and Other Multimedia

Third-Party Plugins and Going Native.
Video FileFormats
Adding a Single Video to Your Web Page
Exploring Video Attributes
Adding Controls and Autoplay to Your Video
Looping a Video and Specifying a Poster Image . . .
Preventing a Video from Preloading
Using Video with Multiple Sources
Multiple Media Sources and the Source Element . . .
Adding Video with Hyperlink Fallbacks.
Adding Video with Flash Fallbacks
Providing Accessibility
Adding Audio File Formats.
Adding a Single Audio File to Your Web Page
Adding a Single Audio File with Controls to Your
WebPage
Exploring Audio Attributes
Adding Controls and Autoplay to Audio in a Loop. . .
Preloading an AudioFile
Providing Multiple Audio Sources
Adding Audio with Hyperlink Fallbacks.
Adding Audio with Flash Fallbacks

Adding Audio with Flash and a Hyperlink Fallback . . .

Getting MultimediaFiles
Considering Digital Rights Management (DRM)
Embedding Flash Animation.

xii

Table of Contents

Embedding YouTube Video 484

Using VideowithCanvas. 485
Coupling VideowithSVG. 486
FurtherResources. 487
Chapter18 Tables 489
StructuringTables. 490
Spanning ColumnsandRows 494
Chapter 19 Working with Scripts. 497
Loading an External Script 499
Adding an Embedded Script.o L. 502
JavaScriptEventso o000 503
Chapter 20 Testing & DebuggingWeb Pages 505
Trying Some Debugging Techniques 506
Checking the Easy Stuff: General 508
Checking the Easy Stuff: HTML 510
Checkingthe Easy Stuff: CSS 512
ValidatingYourCode 514
TestingYourPage. 516
When Images Don’t Appear 519
Still Stuck? 520
Chapter 21 Publishing Your Pages onthe Web 521
Getting Your Own DomainName 522
Finding a Host for YourSite 523
Transferring Filestothe Server 525
Index 529

Bonus chapters mentioned in this eBook are
available after the index.

Appendix A Al
AppendixB B1

Table of Contents xiii

This page intentionally left blank

Introduction

Whether you are just beginning your ven-
ture into building Web sites or have built
some before but want to ensure that your
knowledge is current, you’'ve come along
at a very exciting time in the industry.

How we code and style pages, the brows-
ers in which we view the pages, and the
devices on which we view the browsers
have all advanced substantially the past
few years. Once limited to browsing the
Web from our desktop computers or lap-
tops, we can now take the Web with us on
any number of devices: phones, tablets,

and, yes, laptops and desktops, and more.

Which is as it should be, because the
Web’s promise has always been the
dissolution of boundaries—the power
to share and access information freely
from any metropolis, rural community,

or anywhere in between, from any Web-
enabled device. In short, the Web’s prom-
ise lies in its universality. And the Web’s
reach continues to expand as technology
finds its ways to communities that were
once shut out.

Adding to the Web’s greatness is that
anyone is free to create and launch a site.
This book shows you how. It is ideal for
the beginner with no knowledge of HTML
or CSS who wants to begin to create Web
pages. You'll find clear, easy-to-follow
instructions that take you through the
process of creating pages step by step.
Lastly, the book is a helpful guide to keep
handy. You can look up topics in the table
of contents or index and consult just those
subjects about which you need more
information.

Introduction xv

HTML and CSS in Brief

At the root of the Web’s success is a
simple, text-based markup language that
is easy to learn and that any device with a
basic Web browser can read: HTML. Every
Web page requires at least some HTML,; it
wouldn’t be a Web page without it.

As you will learn in greater detail as you
move through this book, HTML is used to
define your content’s meaning, and CSS is
used to define how your content and Web
page will look. Both HTML pages and CSS
files (style sheets) are text files, making
them easy to edit. You can see snippets of
HTML and CSS in “How This Book Works,”
near the end of this introduction.

You'll dive into learning a basic HTML page
right off the bat in Chapter 1, and you’ll
begin to learn how to style your pages with
CSS in Chapter 7. See “What this book will
teach you” for an overview of all the chap-
ters and a summary of the topics covered.

What is HTML5?

It helps to know some basics about the
origins of HTML in order to understand
HTML5. HTML began in the early 1990s as
a short document that detailed a handful of
elements used to build Web pages. Many
of those elements were for describing Web
page content such as headings, para-
graphs, and lists. HTML's version number
has increased as the language has evolved
with the introduction of other elements and
adjustments to its rules. The most current
version is HTML5.

HTMLS5 is a natural evolution of earlier
versions of HTML and strives to reflect

the needs of both current and future Web
sites. It inherits the vast majority of features
from its predecessors, meaning that if you
coded HTML before HTML5 came on the

scene, you already know a lot of HTMLS5.
This also means that much of HTML5
works in both old and new browsers; being
backward compatible is a key design
principle of HTML5 (see www.w3.org/TR/
html-design-principles/).

HTMLS5 also adds a bevy of new features.
Many are straightforward, such as addi-
tional elements (article, section, figure,
and many more) that are used to describe
content. Others are quite complex and

aid in creating powerful Web applications.
You’ll need to have a firm grasp of creat-
ing Web pages before you can graduate to
the more complicated features that HTML5
provides. HTML5 also introduces native
audio and video playback to your Web
pages, which the book also covers.

What is CSS3?

The first version of CSS didn’t exist until
after HTML had been around for a few
years, becoming official in 1996. Like
HTMLS5 and its relationship to earlier ver-
sions of HTML, CSS3 is a natural extension
of the versions of CSS that preceded it.

CSS3 is more powerful than earlier ver-
sions of CSS and introduces numerous
visual effects, such as drop shadows, text
shadows, rounded corners, and gradients.
(See “What this book will teach you” for
details of what’s covered.)

Web standards and specifications

You might be wondering who created
HTML and CSS in the first place, and who
continues to evolve them. The World Wide
Web Consortium (W3C)—directed by the
inventor of the Web and HTML, Tim Bern-
ers-Lee—is the organization responsible for
shepherding the development of Web stan-
dards. Specifications (or specs, for short)
are documents that define the parameters

xvi Introduction

www.w3.org/TR/html-design-principles/
www.w3.org/TR/html-design-principles/

Graphics

Scripting and Ajnx

Audic and Video

o The W3C site is the industry’s primary source of
Web-standards specifications.

of languages like HTML and CSS. In other
words, specs standardize the rules. Follow
the W3C’s activity at www.w3.org @.

For a variety of reasons, another organi-
zation—the Web Hypertext Application
Technology Working Group (WHATWG,
found at www.whatwg.org)—is developing
the HTML5 specification. The W3C incor-
porates WHATWG’s work into its official
version of the in-progress spec.

With standards in place, we can build our
pages from the agreed-upon set of rules,
and browsers—like Chrome, Firefox, Inter-
net Explorer (IE), Opera, and Safari—can be
built to display our pages with those rules
in mind. (On the whole, browsers imple-
ment the standards well. Older versions of
IE, especially IE6, have some issues.

Specifications go through several stages of
development before they are considered
final, at which point they are dubbed a
Recommendation (www.w3.0rg/2005/10/
Process-20051014/tr).

Parts of the HTML5 and CSS3 specs are still
being finalized, but that doesn’t mean you
can’t use them. It just takes time (literally
years) for the standardization process to
run its course. Browsers begin to implement
a spec’s features long before it becomes

a Recommendation, because that informs
the spec development process itself. So
browsers already include a wide variety of
features in HTML5 and CSS3, even though
they aren’t Recommendations yet.

On the whole, the features covered in this
book are well entrenched in their respec-
tive specs, so the risk of their changing
prior to becoming a Recommendation

is minimal. Developers have been using
many HTML5 and CSS3 features for some
time. So can you.

Introduction xvii

www.w3.org
www.whatwg.org
www.w3.org/2005/10/Process-20051014/tr
www.w3.org/2005/10/Process-20051014/tr

Progressive
Enhancement:
A Best Practice

| began the introduction by speaking of the
universality of the Web—the notion that
information on the Web should be accessi-
ble to all. Progressive enhancement helps
you build sites with universality in mind. It
is not a language, rather it’s an approach
to building sites that Steve Champeon cre-
ated in 2003 (http://en.wikipedia.org/wiki/
Progressive_enhancement).

The idea is simple but powerful: Start your
site with HTML content and behavior that
is accessible to all visitors). To the same
page, add your design with CSS @ and
add additional behavior with JavaScript,
typically loading them from external files
(you’ll learn how to do this).

The result is that devices and browsers
capable of accessing basic pages will get
the simplified, default experience; devices
and browsers capable of viewing more-
robust sites will see the enhanced version.
The experience on your site doesn’t have
to be the same for everyone, as long as
your content is accessible. In essence, the
idea behind progressive enhancement is
that everyone wins.

obarcelona.... capruring hascelosa's culeml reasures on film

Search: (]
Recent Entries

Hospital Sant Pau

than 150,000

continued

o A basic HTML page with no custom CSS
applied to it. This page may not look great, but
the information is accessible—and that’s what’s
important. Even browsers from near the inception
of the Web more than 20 years ago can display
this page; so too can the oldest of mobile phones
with Web browsers. And screen readers, software
that reads Web pages aloud to visually impaired
visitors, will be able to navigate it easily.

xviii Introduction

http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement

- AW A A & Fw i
phpi_:oba_r_;elopa..‘ i -

recent entries

Sant Pau e
Tt Sant Faud Hoagital ot e 103 of Gaudl Avers it the Sagrats
wgrtcrtnt ceprlcchnd e

Heagt:

Cathedral Cloister
g Outiic 7 fiets |

0 The same page as viewed in a browser

that supports CSS. It's the same information,
just presented differently. Users with more
capable devices and browsers get an enhanced
experience when visiting the page.

This book teaches you how to build pro-
gressively enhanced sites even if it doesn’t
always explicitly call that out while doing
so. It’'s a natural result of the best practices
imparted throughout the book.

However, Chapters 12 and 14 do address
progressive enhancement head on. Take
an early peek at those if you’re interested
in seeing how the principle of progres-

sive enhancement helps you build a site
that adapts its layout based on a device’s
screen size and browser capabilities, or
how older browsers will display simplified
designs while modern browsers will display
ones enhanced with CSS3 effects.

Progressive enhancement is a key best
practice that is at the heart of building sites
for everyone.

Introduction xix

Is This Book for You?

This book assumes no prior knowledge

of building Web sites. So in that sense, it

is for the absolute beginner. You will learn
both HTML and CSS from the ground up. In
the course of doing so, you will also learn
about features that are new in HTML5 and
CSS3, with an emphasis on the ones that
designers and developers are using today
in their daily work.

But even if you are familiar with HTML and
CSS, you still stand to learn from this book,
especially if you want to get up to speed
on much of the latest in HTML5, CSS3, and
best practices.

What this book will teach you

We’ve added approximately 125 pages

to this book since the previous edition in
order to bring you as much material as
possible. (The very first edition of the book,
published in 1996, had 176 pages total.)
We’ve also made substantial updates to (or
done complete rewrites of) nearly every
previous page. In short, this Seventh Edi-
tion represents a major revision.

The chapters are organized like so:

m Chapters 1through 6 and 15 through 18
cover the principles of creating HTML
pages and the range of HTML elements
at your disposal, clearly demonstrating
when and how to use each one.

m Chapters 7 through 14 dive into CSS,
all the way from creating your first style
rule to applying enhanced visual effects
with CSS3.

m Chapter 19 shows you how to add pre-
written JavaScript to your pages.

m Chapter 20 tells you how to test and
debug your pages before putting them
on the Web.

m Chapter 21 explains how to secure your
own domain name and then publish
your site on the Web for all to see.

Expanding on that, some of the topics
include:

m Creating, saving, and editing HTML and
CSS files.

m What it means to write semantic HTML
and why it is important.

m How to separate your page’s content
(that is, your HTML) from its presenta-
tion (that is, your CSS)—a key aspect of
progressive enhancement.

m Structuring your content in a meaningful
way by using HTML elements that have
been around for years and ones that
are new in HTMLS5.

m Improving your site’s accessibility with
ARIA landmark roles and other good
coding practices.

m Adding images to your pages and opti-
mizing them for the Web.

m Linking from one Web page to another
page, or from one part of a page to
another part.

m Styling text (size, color, bold, italics,
and more); adding background colors
and images; and implementing a fluid,
multi-column layout that can shrink
and expand to accommodate different
screen sizes.

xx Introduction

m Leveraging new selectors in CSS3
that allow you to target your styles in a
wider range of ways than was previ-
ously possible.

m | earning your options for addressing
visitors on mobile devices.

m Building a single site for all users—
whether they are using a mobile phone,
tablet, laptop, desktop computer, or
other Web-enabled device—based on
many of the principles of responsive
web design, some of which leverage
CSS3 media queries.

= Adding custom Web fonts to your
pages with @font-face.

m Using CSS3 effects such as opacity,
background alpha transparency, gradi-
ents, rounded corners, drop shadows,
shadows inside elements, text shad-
ows, and multiple background images.

m Building forms to solicit input from your
visitors, including using some of the
new form input types in HTML5.

m |ncluding media in your pages with the
HTML5 audio and video elements.

And more.

These topics are complemented by many
dozens of code samples that show you
how to implement the features based on
best practices in the industry.

What this book won’t teach you

Alas, even after adding so many pages
since the previous edition, there is so much
to talk about when it comes to HTML and
CSS that we had to leave out some topics.

With a couple of exceptions, we stuck

to omitting items that you would have
fewer occasions to use, are still subject to
change, lack widespread browser sup-
port, require JavaScript knowledge, or are
advanced subjects.

Some of the topics not covered include:

m The HTML5 details, summary, menu,
command, and keygen elements.

m The HTMLS5 canvas element, which
allows you to draw graphics (and even
create games) with JavaScript.

m The HTML5 APIs and other advanced
features that require JavaScript knowl-
edge or are otherwise not directly
related to the new semantic HTML5
elements.

m CSS sprites. This technique involves
combining more than one image
into a single image, which is very
helpful in minimizing the number of
assets your pages need to load. See
www.bruceontheloose.com/sprites/ for
more information.

m CSSimage replacement. These tech-
niques are often paired with CSS
sprites. See www.bruceontheloose
.com/ir/ for more information.

m CSS3 transforms, animations, and
transitions.

m CSS3’s new layout modules.

Introduction xxi

www.bruceontheloose.com/sprites/
www.bruceontheloose.com/ir/
www.bruceontheloose.com/ir/

How This Book Works

Nearly every section of the book contains
practical code examples that demonstrate
real-world use (@) and @). Typically, they
are coupled with screen shots that show
the results of the code when you view the
Web page in a browser @.

Most of the screen shots are of the lat-
est version of Firefox that was available

at the time. However, this doesn’t imply

a recommendation of Firefox over any
other browser. The code samples will look
very similar in any of the latest versions

of Chrome, Internet Explorer, Opera, or
Safari. As you will learn in Chapter 20, you
should test your pages in a wide range of
browsers before putting them on the Web,

because there’s no telling what browsers
your visitors will use.

The code and screen shots are accompa-
nied by descriptions of the HTML elements
or CSS properties in question, both to give
the samples context and to increase your
understanding of them.

In many cases, you may find that the
descriptions and code samples are enough
for you to start using the HTML and CSS
features. But if you need explicit guidance
on how to use them, step-by-step instruc-
tions are always provided.

Finally, most sections contain tips that

relay additional usage information, best
practices, references to related parts of the
book, links to relevant resources, and more.

Q You’ll find a snippet of HTML code on many pages, with the pertinent sections highlighted. An ellipsis (...)
represents additional code or content that was omitted for brevity. Often, the omitted portion is shown in a

different code figure.

<body>
<header role="banner">

<nav role="navigation">
<ul class="nav">

</nav>

</header>

</body>
</html>

home</1i>
about</1i>

resources</1i>
archives</1i>

xxii Introduction

0 If CSS code is relevant to the example, it is
shown in its own box, with the pertinent sections
highlighted.

/* Site Navigation */
nav 1i {
float: left;
font-size: .75em; /* makes the
bullets smaller */
}

.nav 1i a {
font-size: 1.5em;

}

.nav li:first-child {
list-style: none;
padding-left: o;

L\ F R U o | J 4
photqbarcelona.., .]

G Screen shots of one or more browsers
demonstrate how the code affects the page.

Conventions used in this book

The book uses the following conventions:

The word HTML is all encompassing,
representing the language in general.
HTMLS5 is used when referring to that
specific version of HTML, such as when
discussing a feature that is new in
HTML5 and doesn’t exist in previous
versions of HTML. The same approach
applies to usage of the terms CSS (gen-
eral) and CSS3 (specific to CSS3).

Text or code that is a placeholder for a
value you would create yourself is itali-
cized. Most placeholders appear in the
step-by-step instructions. For example,
“Or type #rrggbb, where rrggbb is the
color’s hexadecimal representation.”

Code that you should actually type or
that represents HTML or CSS code
appears in this font.

An arrow () in a code figure indicates
a continuation of the previous line—the
line has been wrapped to fit in the
book’s column). The arrow is not part
of the code itself, so it's not something
you would type. Instead, type the line
continuously, as if it had not wrapped to
another line.

The first occurrence of a word is itali-
cized when it is defined.

IE is often used as a popular abbrevia-
tion of Internet Explorer. For instance,
IEQ is synonymous with Internet
Explorer 9.

Whenever a plus sign (+) follows a
browser version number, it means the
version listed plus subsequent versions.
For instance, Firefox 8+ refers to Firefox
8.0 and all versions after it.

Introduction xxiii

Companion Web Site

The book’s site, at www.bruceontheloose
.com/htmlcss/, contains the table of
contents, every complete code example
featured in the book (plus some additional
ones that wouldn't fit), links to resources
cited in the book (as well as additional
ones), information about references used
during writing, a list of errata, and more.

The site also includes reference sections
(Appendixes A and B) that we didn’t have
room to include in the book. These are
handy for quickly looking up HTML ele-
ments and attributes or CSS properties and
values. (They also contain some informa-
tion not covered in the book.)

You can find the code examples at www
.bruceontheloose.com/htmicss/examples/.
You can browse them from there or down-
load them to your computer—all the HTML
and CSS files are yours for the taking.

In some cases, I've included additional
comments in the code to explain more
about what it does or how to use it. A
handful of the code samples in the book
are truncated for space considerations, but
the complete versions are on the book’s
Web site. Please feel free to use the code
as you please, modifying it as needed for
your own projects.

The URLs for some of the key pages on the
book’s site follow:

m Home page: www.bruceontheloose
.com/htmlcss/

m Code samples: www.bruceontheloose
.com/htmlcss/examples/

m Appendix A: HTML Reference:
www.bruceontheloose.com/ref/html/

m Appendix B: CSS Properties and Values:
www.bruceontheloose.com/ref/css/

| hope you find the site helpful.

Video Training

Visual QuickStart Guides are now even
more visual: Building on the success of the
top-selling Visual QuickStart Guide books,
Peachpit now offers Video QuickStarts. As
a companion to this book, Peachpit offers
more than an hour of short, task-based
videos that will help you master HTML5’s
top features and techniques; instead of just
reading about how to use HTML5, you can
watch it in action. It’s a great way to learn
all the basics and some of the newer or
more complex features of HTML5. Log on
to the Peachpit site at www.peachpit.com/
register to register your book, and you’ll
find a free streaming sample; purchasing
the rest of the material is quick and easy.

xxiv Introduction

www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/ref/html/
www.bruceontheloose.com/ref/css/
www.peachpit.com/

Web Page Building
Blocks

While Web pages have become increasingly
complex, their underlying structure remains In ThiS Chapter

remarkably simple. The first thing you

should know is that it’s impossible to create A Basic HTML Page

a Web page without HTML. As you will learn, Semantic HTML: Markup with Meaning 6
HTML houses your content and describes

.] Markup: Elements, Attributes, and Values 13
its meaning. In turn, Web browsers render

your HTML-encased content for users. A Web Page’s Text Content 16
A Web page is primarily made up of three Links, Images, and Other Non-Text
components: Content 17
m Text content: The bare text that File Names 19
appears on the page to inform visitors URLs 20

about your business, family vacation,
products, or whatever the focus of your
page may be.

Key Takeaways 24

m References to other files: These load
items such as images, audio, video,
and SVG files, and they link to other
HTML pages and assets, as well as to
style sheets (which control your page’s
layout) and JavaScript files (which add
behavior to your page).

m Markup: The HTML elements that
describe your text content and make
the references work. (The m in HTML
stands for markup.)

It's important to note that each of these
components in a Web page is made up
exclusively of text. This means that pages
are saved in text-only format and can be
viewed on practically any browser on any
platform, whether desktop, mobile, tablet,
or otherwise. It guarantees the universal-
ity of the Web. A page may look differ-
ent when viewed on one device versus
another, but that’s OK. The important thing
as a first step is to make content acces-
sible to all users, and HTML affords that.

In addition to the three components that a
Web page is primarily made up of, a page
also includes HTML that provides informa-
tion about the page itself, most of which
your users don’t see explicitly and that is
primarily intended for browsers and search
engines. This can include information

about the content’s primary language
(English, French, and so on), character
encoding (typically UTF-8), and more.

This chapter will walk you through a basic
HTML page, discuss some best practices,
and explain each of the three important
components.

Note: As mentioned in the introduction,

| use HTML to refer to the language in
general. For those instances in which I'm
highlighting special characteristics unique
to a version of the language, | will use the
individual name. For example, “HTML5
introduces several new elements and
redefines or eliminates others that previ-
ously existed in HTML 4 and XHTML 1.0.”
For more details, please consult “How This
Book Works” in the introduction.

2 Chapter1

e === A Basic HTML Page

Let’s take a look at a basic HTML page to
give you context for what'’s to follow in this
chapter and beyond. Figure @) illustrates
how a desktop browser typically renders
the HTML code in @. You'll learn some of
the basics about the code @, but don’t
worry if you don’t understand it all right
now. This is just to give you a taste of

1 am contmually amazed at the beautibil, debcate Blue Flax that somehow ook
hold m my garden. They are awash m color every mormmg, yet not a smgle HTML YOU have the rest Of the bOOk to
flower remains by the aftemoon. They are the very definition of ephemeral learn more about it.

You can probably guess some of what’s
Q A typical default rendering of the page.

Although this shows the page in Firefox, the page going on I_n the.codezespecnally in the
displays similarly in other browsers. body section. First let’s look at the part

before the body.

0 Here is the code for a basic HTML page. I've highlighted the HTML portions so you can distinguish
them from the page's text content. As demonstrated in 0 the HTML surrounding the text content doesn't
appear when you view the page in a browser. But, as you will learn, the markup is essential because it
describes the content's meaning. Note, too, that each line happens to be separated with a carriage return.
This isn't mandatory and does not impact the page's rendering.

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />

<title>Blue Flax (Linum lewisii)</titles
</head>
<body>

<article>

<h1>The Ephemeral Blue Flax</hi>

<p>I am continually amazed at the beautiful, delicate <a href="http://
en.wikipedia.org/wiki/Linum_lewisii" rel="external" title="Learn more about Blue
Flax">Blue Flax that somehow took hold in my garden. They are awash in color every
morning, yet not a single flower remains by the afternoon. They are the very definition
of ephemeral.</p>
</article>
</body>
</html>

Web Page Building Blocks 3

Everything above the <body> start tag is
the instructional information for browsers
and search engines mentioned earlier @.
Each page begins with the DOCTYPE dec-
laration, which tells the browser the HTML
version of the page.

You should always use HTML5’s DOCTYPE,
which is <IDOCTYPE html>. The case of

the text doesn’t matter, but it’'s more com-
mon to use DOCTYPE in all uppercase.
Regardless, always include the DOCTYPE
in your pages. (See the sidebar “HTML5’s
Improved DOCTYPE” in Chapter 3 for more
information.)

The bits that start at <!DOCTYPE html> and
continue through </head> are invisible to
users with one exception: the text between
<title> and </title>—Blue Flax (Linum
lewisii)}—appears as the title at the very top
of the browser window and on a browser
tab (). Additionally, it’s typically the default
name of a browser bookmark or favorite
and is valuable information for search
engines. Chapter 3 explains what the other
parts of the top segment of a page do.

G The title element text is the only part of
the top area of an HTML document that the user
sees. The rest is information about the page for
browsers and search engines.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>The Ephemeral Blue Flax
(Linum lewisii)</title>
</head>

4 Chapter1

0 A page’s content exists between the start and
end tags of the body element. The document ends
at </html>.

<IDOCTYPE html>
<html lang="en">
. [document head] . . .
<body>
<article>
<h1>The Ephemeral Blue Flax</hi>

<img src="blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum
lewisii)" />

<p>I am continually amazed
at the beautiful, delicate
<a href="http://en.wikipedia.org/
wiki/Linum_lewisii" rel="external"
title="Learn more about Blue Flax">
Blue Flax that somehow took
hold in my garden. They are awash
in color every morning, yet not a
single flower remains by the
afternoon. They are the very
definition of ephemeral.</p>
</article>
</body>
</html>

Meanwhile, your page’s content—that is,
what s visible to users—goes between
<body> and </body>. Finally, the </html>
end tag signals the end of the page ©.

The code’s indentation has absolutely

no bearing on whether the code is valid
HTML. It also doesn’t affect how the con-
tent displays in the browser (the pre ele-
ment, which you’ll learn about in Chapter 4,
is the one exception). However, it's custom-
ary to indent code that’s nested in a parent
element to make it easier to glean the
hierarchy of elements as you read through
the code. You’ll learn more about parents
and children later in this chapter. You’ll also
learn in greater detail about the default
browser rendering.

First, let’s discuss what it means to write
semantic HTML and why it is a cornerstone
of an effective Web site.

Web Page Building Blocks 5

Semantic HTML:
Markup with Meaning

HTML is a clever system of including
information about the content in a text
document. This information, called markup,
describes the meaning of the content, that
is, the semantics. You’ve already seen a
few examples in our basic HTML page,
such as the p element that marks up para-
graph content.

HTML does not define how the content
should appear in a browser; that’s the role
of CSS (Cascading Style Sheets). HTML5
stresses this distinction more than any
prior version of HTML. It’s at the core of the
language.

You might be wondering why, if that’s the
case, some text in the basic HTML page @)
looks larger than other text, or is bold or
italicized @.

Great question. The reason is that every
Web browser has a built-in CSS file (a style
sheet) that dictates how each HTML ele-
ment displays by default, unless you create
your own that overwrites it. The default
presentation varies slightly from browser to
browser, but on the whole it is fairly consis-
tent. More importantly, the content’s under-
lying structure and meaning as defined by
your HTML remain the same.

o The content of our basic page plus a second
paragraph added at the end. The HTML elements
don’t dictate how the content should appear, just
what they mean. Instead, each browser’s built-in
style sheet dictates how the content displays by
default

<body>
<article>
<h1>The Ephemeral Blue Flax</h1>

<img src="blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum
lewisii)" />

<p>I am continually amazed
at the beautiful, delicate
<a href="http://en.wikipedia.org/
wiki/Linum_lewisii" rel="external"
title="Learn more about Blue Flax">
Blue Flax that somehow took
hold in my garden. They are awash
in color every morning, yet not a
single flower remains by the
afternoon. They are the very
definition of ephemeral.</p>

<p><small>8copy; Blue Flax Society.
</small></p>
</article>
</body>
</html>

6 Chapter1

&) Bl Flan {Linnurm bewisi) - Mueilla Firefon =10] x|
File Edt Yew History Bookmarks Took Help
s Pl {Lineam bowiici) ‘ |

The Ephemeral Blue Flax

I am contumally amazed at the beautifil, delicate Blus Flax that semehow took
hold m my garden. They are awash m color every monumg, yet not a smgle
Hower remamns by the alternoen. They are the very delimtion of ephemeral

@ Bue Flax Society

0 A browser’s default style sheet renders
headings (h1—h6 elements) differently than normal
text, italicizes em text, and colors and underlines
links. Additionally, some elements begin on their
own line (h1 and p, for example), and others
display within surrounding content (like a and
em). This example includes a second paragraph
(the copyright notice) to make it clear that each
paragraph occupies its own line. It's simple to
overwrite any or all of these presentation rules
with your own style sheets.

Block-level, Inline, and HTML5

As you can see, some HTML elements (for
example, the article, h1, and p) display
on their own line like a paragraph does in
a book, while others (for example, the a
and em) render in the same line as other
content @). Again, this is a function of the
browser’s default style rules, not the HTML
elements themselves. Allow me to elabo-
rate. Before HTML5, most elements were
categorized as either block-level (the ones
that displayed on their own line) or inline
(the ones that displayed within a line of
text). HTML5 does away with these terms
because they associate elements with
presentation, which you’ve learned isn’t
HTMLs role.

Instead, generally speaking, elements that
had previously been dubbed inline are cat-
egorized in HTMLS as phrasing content—
that is, elements and their contained text
that primarily appear within a paragraph.
(Chapter 4 focuses almost exclusively

on phrasing content. See the full list at
http://dev.w3.org/html5/spec-author-view/
content-models.html#phrasing-content-0.)

The old block-level elements also now fall
into new HTMLS5 categories that focus on
their semantics. Many of these elements
account for the main structural blocks and
headings of your content (dig into Chapter
3 to learn more about sectioning content
and heading content elements).

With all that said, browsers haven’t
changed the default display rules for these
elements, nor should they. After all, you
wouldn't want, say, the two paragraphs (the
p elements) running into each other, or the
em text (“amazed”) to break the sentence
by appearing on its own line (em is the ele-
ment you use for adding emphasis).

Web Page Building Blocks 7

http://dev.w3.org/html5/spec-author-view/content-models.html#phrasing-content-0
http://dev.w3.org/html5/spec-author-view/content-models.html#phrasing-content-0

So usually headings, paragraphs, and
structural elements like article display
on their own line, and phrasing content
displays on the same line as surround-

ing content. And even though HTML5

no longer uses the terms block-level and
inline, it helps to know what they mean.
It's common for tutorials to use them since
they were entrenched in HTML vernacular
before HTML5. | might use them occasion-
ally in the book to quickly convey whether
an element occupies its own line or shares
a line by default.

We’ll cover CSS in detail in later chapters,
but for now know that a style sheet, like
an HTML page, is just text, so you can
create one with the same text editor as
your HTML.

HTML5's Focus on Semantics

HTML5 emphasizes HTML semantics, leav-
ing all visual styling to CSS. That wasn’t
always the case with earlier versions of
HTML.

A proper means to style pages didn’t exist
in the Web’s nascent years; HTML was
already a few years old by the time CSS1
was formally introduced in December

of 1996. To fill that gap in the meantime,
HTML included a handful of presentational
elements whose purpose was to allow
basic styling of text, such as making it bold,
italicized, or a different size than surround-
ing text.

Those elements served their purpose
for the time, but they rightfully fell out of
favor as best practices evolved for Web

development. Central to that thinking
was—and still very much is—the notion that
HTML is for describing the content’s mean-
ing only, not its display.

The presentational HTML elements broke
this best practice. As such, HTML 4 dep-
recated their use, recommending authors
use CSS to style text and other page ele-
ments instead.

HTML5 goes further; it eliminates some
presentational elements and redefines
others so they carry only semantic value
instead of dictating presentation.

The small element is one such example.
Initially, it was intended to make text
smaller than regular text. However, in
HTML5 small represents fine print, such
as a legal disclaimer. You can use CSS

to make it the largest text on the page if
you’d like, but that won’t change the mean-
ing of your small content.

Meanwhile, small’s old counterpart, the
big element, doesn’t exist in HTML5. There
are other examples, too, which you’ll learn
about as you progress through the book.

HTMLS5 also defines new elements, such
as header, footer, nav, article, section,
and many more that enrich the semantics
of your content. You’ll learn about those
later as well.

However, whether you use an HTML ele-
ment that’s existed since the dawn of the
language or one that’s new in HTML5,
your goal should be the same: Choose the
elements that best describe the meaning
of your content without regard for their
presentation.

8 Chapter1

G The body of our basic page, which contains the
article, h1, img, p, em, and a elements to describe
the content’s meaning. All the content is nested in

the article.

<body>
<article>
<h1>The Ephemeral Blue Flax</hi>

<img src="blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum
lewisii)" />

<p>I am continually amazed
at the beautiful, delicate
<a href="http://en.wikipedia.org/
wiki/Linum_lewisii" rel="external"
title="Learn more about Blue Flax">
Blue Flax that somehow took
hold in my garden. They are awash
in color every morning, yet
not a single flower remains by
the afternoon. They are the very
definition of ephemeral.</p>

</article>

</body>

0 Headings are critical elements in defining a
page’s outline. They make a page more accessible
to users of screen readers, and search engines
use them to determine the focus of a page.

<h1>The Ephemeral Blue Flax</hi>

G It's easy to add an image to a page with img.
As defined by the alt attribute, “Blue Flax (Linum
lewisii)” displays if our image doesn’t.

<img src="blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum lewisii)"
/>

The Semantics of Our
Basic HTML Page

Now that you know HTML's role, let’s look a
little deeper at the thought process behind
marking up sample content. As you'll see,
there’s no magic to writing semantic HTML.
It's mostly common sense once you’re
familiar with the elements at your disposal.
Let’s revisit the body of our basic page

for a taste of some of the most frequently
used HTML elements @.

All the content is contained in an article
element (@. In short, article defines a
distinct piece of content. The article ele-
ment is the appropriate choice to surround
the content for our basic page, but not nec-
essarily for every page you’ll write. You'll
learn more about when to use article in
Chapter 3.

Next is a heading @. HTML provides you
six heading levels, ha—h6, with h1 being the
most important. An h2 is a subheading of
an ha, an h3 is a subheading of an h2, and
so on, just like when you type a document
with various headings in a word processor.

Every HTML page should have an h1 (or
more, depending on your content), so
marking up our heading with h1 was the
obvious choice. The heading elements h1—
hé are covered more in Chapter 3.

Next, you have an image @. The img ele-
ment is the primary choice for displaying
an image, so again, there was no debate
about which element was appropriate. The
alt attribute provides text that displays

if the image doesn’t load or if the page is
viewed in a text-only browser. You’ll learn
more about images in Chapter 5.

Web Page Building Blocks 9

The paragraph is marked up with—surprise—
the p element @. Just as in printed materi-
als, a paragraph can contain a single
sentence or several sentences. If our page
needed another paragraph, you’d simply
add another p element after the first one.

There are two elements nested within our
paragraph that define the meaning of bits
of text: em and a (). These are examples of
the numerous phrasing content elements
that HTML5 provides, the majority of which
improve the semantics of paragraph text.
As mentioned, those, along with p, are
discussed in Chapter 4.

The em element means “stress emphasis.”
In the case of our page, it emphasizes

the amazement the flowers induced
Remember that because HTML describes
the meaning of content, em dictates seman-
tic, not visual, emphasis even though it’s
common to render em text in italics.

Finally, the basic page defines a link

to another page with the a element
(“anchor”), which is the most powerful ele-
ment in all of HTML because it makes the
Web, the Web: It links one page to another
page or resource, and links one part of a
page to another part of a page (either the
same page or a different one). In the exam-
ple, it signifies that the text “Blue Flax” is a
link to a page on Wikipedia @.

o The p element may contain other elements
that define the semantics of phrases within a
paragraph. The em and a elements are two
examples.

<p>I am continually amazed at
the beautiful, delicate <a href="http://
en.wikipedia.org/wiki/Linum_lewisii"
rel="external" title="Learn more about
Blue Flax"s>Blue Flax that somehow
took hold in my garden. They are awash in
color every morning, yet not a single
flower remains by the afternoon. They are
the very definition of ephemeral.</p>

@ This a element defines a link to the Wikipedia
page about Blue Flax. The optional rel attribute
adds to the semantics by indicating that the link
points to another site. The link works without it,
though. The optional title attribute enhances the
semantics of the a by providing information about
the linked page. It appears in the browser when a
user hovers over the link.

<a href="http://en.wikipedia.org/wiki/Linum_
lewisii" rel="external" title="Learn more
about Blue Flax">Blue Flax

10 Chapter1

Pretty easy, right? Once you’ve learned
more about the HTML elements available
to you, choosing the right ones for your
content is usually a straightforward task.
Occasionally, you’ll come across a piece of
content that reasonably could be marked
up in more than one way, and that’s OK.
There isn’t always a right and wrong way,
just most of the time.

Lastly, HTML5 doesn’t try to provide an
element for every type of content imagin-
able, because the language would become
ungainly. Instead, it takes a practical, real-
world stance, defining elements that cover
the vast majority of cases.

Part of HTML's beauty is that it's simple

for anyone to learn the basics, build some
pages, and grow their knowledge from
there. So, although there are approximately
100 HTML elements, don’t let that number
scare you. There’s a core handful you'll
find yourself using time and again, while
the remaining ones are reserved for less
common cases. You've already learned the
basics of several common elements, so
you’re well on your way.

Why Semantics Matter

Now that you know the importance of
semantic HTML and have seen it in action,
you need to know the reasons why it’s
important.

Here are some of the most important rea-
sons (this isn’t an exhaustive list), some of
which we’ve touched on already:

m Improved accessibility and interoper-
ability (content is available to assistive
technologies for visitors with dis-
abilities, and to browsers on desktop,
mobile, tablet, and other devices alike)

m |mproved search engine optimization
(SEO)

= (Typically) lighter code and faster pages
m Easier code maintenance and styling

If you aren’t familiar with accessibility,

it's the practice of making your content
available to all users, regardless of their
capabilities (see www.w3.org/standards/
webdesign/accessibility). Tim Berners-Lee,
inventor of the Web, famously said, “The
power of the Web is in its universality.
Access by everyone regardless of disability
is an essential aspect.”

Web Page Building Blocks 11

www.w3.org/standards/webdesign/accessibility
www.w3.org/standards/webdesign/accessibility

Any device with a browser is capable of
displaying HTML, since it’s just text. The
means by which a user accesses content
can vary, however. For instance, sighted
users view the content, whereas a visually
impaired user may increase the page or
font size or use a screen reader, software
that reads content aloud to them (one
example of assistive technology). In some
cases, screen readers announce the type
of HTML element surrounding content in
order to give the user context for what'’s to
follow. For example, the user may be told
that a list has been encountered before the
individual list items are read aloud. Similarly,
users are told when a link is encountered
so they can decide whether to follow it.

Screen reader users can navigate a page
in a variety of ways, such as jumping from
one heading to the next via a keyboard
command. This allows them to glean the
key topics of a page and listen in more
detail to the ones that interest them rather
than having to listen to the entire page
sequentially.

So you can see why good semantics
make a marked difference to users with
disabilities.

SEO—that is, your page's ranking in search
engine results—can improve, because
search engines put an emphasis on the
portions of your content that are marked
up in a particular way. For instance, the
headings tell the search engine spider the
primary topics of your page, helping the
search engine determine how to index
your page’s content.

As you progress through the book, you’ll
learn why good semantics can make your
code more efficient and easier to maintain
and style.

12 Chapter1

Markup: Elements,
Attributes, and Values

Now that you’ve seen some HTML, let’s
take a closer look at what constitutes
markup.

HTML has three principal markup compo-
nents: elements, attributes, and values.
You’ve seen examples of each in our
basic page.

Elements

Elements are like little labels that describe
the different parts of a Web page: “This is a
heading, that thing over there is a para-

graph, and that group of links is navigation.”

We discussed a few elements in the previ-
ous section. Some elements have one or
more attributes, which further describe the
purpose and content (if any) of the element.

Elements can contain text and other ele-
ments, or they can be empty. A non-empty

Content

Start tag End tag

— —
am continually amazed

Angle brackets Forward slash

0 Here is a typical HTML element. The start

tag and end tag surround the text the element
describes. In this case, the word “amazed”

is emphasized, thanks to the em element. It’s
customary to type your element tags in lowercase.

element consists of a start tag (the
element’s name and attributes, if any,
enclosed in less-than and greater-than
signs), the content, and an end tag (a
forward slash followed by the element’s
name, again enclosed in less-than and
greater-than signs) @.

An empty element (also called a void ele-
ment) looks like a combination start and
end tag, with an initial less-than sign, the
element’s name followed by any attributes
it may have, an optional space, an optional
forward slash, and the final greater-than
sign, which is required @.

The space and forward slash before the
end of an empty element are optional in
HTMLS5. It’s probably fair to say that those
of us who previously coded in XHTML,
which requires the forward slash to close
an empty element, tend to use it in HTML5
too, though certainly others have dropped it.
I include it in my code, but if you choose
to omit it from yours, the page will behave

A space and forward slash

0 Empty elements, like img shown here, do not surround any text content (the alt attribute text is part of the
element, not surrounded by it). They have a single tag which serves both to open and close the element. The
space and forward slash at the end are optional in HTML5, but it's common to include them. However, the >

that completes the element is required.

Web Page Building Blocks 13

exactly the same. Whichever way you go, |
recommend doing it consistently.

It's customary to type your element names
in all lowercase, although HTML5 isn’t
picky here either, allowing uppercase
letters instead. However, it’s rare to find
someone nowadays who codes in upper-
case, so unless the rebel in you just can’t
resist, | don’t recommend it. It’s looked
upon as a dated practice.

Attributes and Values

Attributes contain information about the
content in the document, as opposed to
being content itself (@ and @). In HTML5,
an attribute’s value may optionally be

enclosed in quotation marks, but it's cus-
tomary to include them, so | recommend
you always do so. And just as with element
names, | recommend you type your attri-
bute names in lowercase.

Although you’ll find details about accept-
able values for most attributes in this book,
let me give you an idea of the kinds of
values you’ll run into as you progress.

Some attributes can accept any value,
others are more limited. Perhaps the most
common are those that accept enumerated
or predefined values. In other words, you
must select a value from a standard list of
choices @. Be sure to write enumerated
values in all lowercase letters.

for js an attribute of 1label

The value of the for attribute

—
<label for="email"sEmail Address</label>
I_l_l

G Here is a 1abel element (which associates a text label with a form field) with a simple attribute-value pair.
Attributes are always located inside an element’s start tag. It's customary to enclose them in quotation marks.

href is an attribute of a

| Value for href
|

rel is also an attribute of a
Value for rel

[
Value for title
title is an attribute of a

r 1T 1 l_|_|
<a href="http://en.wikipedia.org/wiki/Linum_lewisii" rel="external"
title="Learn more about Blue Flax">Blue Flax

Q Some elements, like a shown here, can take one or more attributes, each with its own value. The order is
not important. Separate each attribute-value pair from the next with a space.

Predefined value

<link rel="stylesheet" media="screen" href="blueflax.css" />

G Some attributes only accept specific values. For example, the media attribute in the 1ink element can
be set to all, screen, or print, among others, but you can’t just make up a value for it like you can with the

title attribute.

14 Chapter 1

Many attributes require a number for their
value, particularly those describing size
and length. A numeric value never includes
units, just the number. Where units are
applicable, as in the width and height of an
image or video, they are understood to be
pixels.

Some attributes, like href and sxc, refer-
ence other files and thus must contain
values in the form of a URL, or Uniform
Resource Locator, a file’s unique address
on the Web. You'll learn more about URLs
in the “URLs” section of this chapter.

Parents and Children

If one element contains another, it is
considered to be the parent of the
enclosed, or child, element. Any elements
contained in the child element are con-
sidered descendants of the outer, parent

element @. You can actually create a
family tree of a Web page that shows the
hierarchical relationships between each
element on the page and that uniquely
identifies each element.

This underlying, family tree-like structure
is a key feature of HTML code. It facilitates
both styling elements (which you’ll begin
learning about in Chapter 7) and applying
JavaScript behavior to them.

It's important to note that when elements
contain other elements, each element must
be properly nested, that is, fully contained
within its parent. Whenever you use an

end tag, it should correspond to the last
unclosed start tag. In other words, first
open element 1, then open element 2,

then close element 2, and then close
element1@.

<article>
<h1>The Ephemeral Blue Flax</hi>

</article>

<p>... continually amazed ... delicate <a ...>Blue Flax ...</p>

o The article element is parent to the h1, img, and p elements. Conversely, the h1, img, and p elements
are children (and descendants) of the article. The p element is parent to both the em and a elements. The
em and a are children of the p and also descendants (but not children) of the article. In turn, article is their

ancestor.

Correct (no overlapping lines)

| —_— |
<p>... continually amazed ...</p>

<p>... continually amazed ...</p>
I L L 1

Incorrect (the sets of tags cross over each other)

@ Elements must be properly nested. If you open p and then em, you must close em before you close p.

Web Page Building Blocks 15

A Web Page’s
Text Content

The text contained within elements is per-
haps a Web page’s most basic ingredient. If
you’ve ever used a word processor, you've
typed some text. Text in an HTML page,
however, has some important differences.

First, when a browser renders HTML it
collapses extra spaces or tabs into a single
space and either converts returns and line
feeds into a single space or ignores them
altogether (@) and ©@).

Next, HTML used to be restricted to ASCI|
characters—basically the letters of the
English language, numerals, and a few

of the most common symbols. Accented
characters (common to many languages

of Western Europe) and many everyday
symbols had to be created with special
character references like é (for é) or
© (for ©). See a full list at www.eliza
bethcastro.com/html/extras/entities.html.

Unicode mitigates a lot of issues with
special characters. It's standard practice

to encode pages in UTF-8, as in the basic
page @, and save HTML files with the same
encoding (see “Saving Your Web Page” in
Chapter 2). | recommend you do the same.

Because Unicode is a superset of
ASCll—it’'s everything ASClIl is, and a lot
more—Unicode-encoded documents are
compatible with existing browsers and edi-
tors, except particularly old ones. Brows-
ers that don’t understand Unicode will
interpret the ASCII portion of the document
properly, while browsers that do under-
stand Unicode will display the non-ASCI|
portion as well. Even so, it’s still common to
use character references at times, such as
for the copyright symbol since it’s easy to
both remember and type ©

o A page’s text content (highlighted) is mostly
anything besides the markup. In this example, note
that each sentence is separated by at least one
carriage return, and some words are separated

by several spaces (just to emphasize the point
about collapsing returns and spaces). Also, it
includes a special character reference (©) for
the copyright symbol to ensure that it is properly
displayed no matter the encoding in which you
save this document.

<p>I am continually amazed at the
beautiful, delicate Blue Flax that
somehow took hold in my garden.

They are awash in color every

morning, yet not a single flower

remains by the afternoon.

They are the very definition of
ephemeral.</p>
<p>© Blue Flax Society.</p>

) plue Flas (L lewisi) - Mozila Firefox =15l
Lis [de yew Hgtory Pockmacks ok sl
Bl Pl (Linum bevist) |+

T amn conbnually amozed al the beastiful, delicate Blue Fla that somehow ook
hold in my garden They are awash i color svery mormang, yet not a single flawer
remains by the afternoon They are the very defingtion of ephemeral

@ Blue Flax Society

0 Note that when you view the document with a
browser, the extra returns and spaces are ignored
and the character reference is replaced by the
corresponding symbol (©).

G Specify your document’s character encoding
directly after the head start tag. The charset
attribute sets the encoding type.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Blue Flax (Linum lewisii)</title>
</head>
<body>

</body>
</html>

16 Chapter1

www.elizabethcastro.com/html/extras/entities.html
www.elizabethcastro.com/html/extras/entities.html

o In our basic HTML document, there is a
reference to an image file called blueflax.jpg,
which the browser will request, load, and display
when it loads the rest of the page. The page also
includes a link to another page about Blue Flax.

<article>
<h1>The Ephemeral Blue Flax</hi>

<img src="blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum
lewisii)" />

<p>I am continually amazed at
the beautiful, delicate <a href=
"http://en.wikipedia.org/wiki/Linum_
lewisii" rel="external" title="Learn
more about the Blue Flax">Blue Flax
 that somehow took hold in my
garden. They are awash in color every
morning, yet not a single flower
remains by the afternoon. They are the
very definition of ephemeral.</p>

</article>

) Bl Flas {Linum bevisii} - Mogilla Firefus =10] 2|
Fle Edt Yiew Hgtory Bockmarks Took el
s Pl (Lirasm leweisil) [+

The Ephemeral Blue Flax

1 am contmually amazed at the beautibul, debcate Blue Flax that somehow ook

hold m my garden. They are awash m color every mormmg, yet not a smgle
flower remains by the afternoon. They are the very definition of ephemeral

0 Images and other non-text content are
referenced from a Web page, and the browser
displays them together with the text.

Links, Images, and
Other Non-Text
Content

Of course, part of what makes the Web

so vibrant are the links from one page to
another, and the images, videos, music,
animations, and more. Instead of actually
enclosing the external files, such as videos,
in the HTML file, these files are saved inde-
pendently and are simply referenced from
within the page @. Since the reference

is nothing more than text, the HTML file
remains nearly universally accessible.

Browsers can handle links and images
(except in text-only browsers) without skip-
ping a beat @. However, they can’t neces-
sarily handle every other kind of file. If you
reference a file that your visitor's browser
doesn’t understand, the browser will often
try to find a plugin or helper application—
some appropriate program on the visitor’s
computer—that is capable of opening that
kind of file.

You can also give browsers extra informa-
tion about how to render content with a
plugin if it requires it, or how to download
the plugin if the visitor doesn’t already
have it on their computer.

Web Page Building Blocks 17

All this business about downloading and
installing plugins disrupts a user’s experi-
ence on your site, assuming they stick
around. Plugins can also introduce per-
formance problems because they aren’t a
native part of the browser.

Flash, for instance, has been the most
widespread plugin for years. No doubt
you’ve watched an online video played
through Flash at some point and experi-
enced your computer slow down or the
occasional browser crash (or both).

HTML5 attempts to mitigate many of these
issues by introducing native media play-
back in the browser via the audio and
video elements. Unfortunately, there’s
been debate among the browser vendors
about which media formats to support,

so you can’t always do away with plugins
altogether yet. But it’s a start.

You’'ll learn more about images in
Chapter 5, and go over plugins, HTML5’s
media elements, and more in Chapter 17.

18 Chapter1

File Names

Like any other text document, a Web page
has a file name that identifies itself to

you, your visitors, and your visitors’ Web
browsers. There are a few tips to keep in
mind when assigning file names to your
Web pages that will help you organize your
files, make it easier for your visitors to find
and access your pages, ensure that their
browsers view the pages correctly, and
improve SEO (@) and ©).

Use Lowercase File Names

Since the file name you choose for your
Web page determines what your visitors
will have to type in order to get to your
page, you can save your visitors from inad-
vertent typos (and headaches) by using
only lowercase letters in your file names.
It's also a big help when you create links
between your pages yourself. If all your file
names have only small letters, it’s just one
less thing you’ll have to worry about.

Separate Words with a Dash

Never include spaces between words in
your file names. Instead, use a dash, for
example, company-history.html and
my-favorite-movies.html. You’ll come
across the occasional site that uses under-
scores (“_") instead, but they aren’t recom-
mended, because dashes are preferred by
search engines.

Use the Proper Extension

The principal way a browser knows that it
should read a text document as a Web page
is by looking at its extension. Although .htm
also works, .html is customary, so | recom-
mend you use that as your extension. If the
page has some other extension, such as
.txt, the browser will treat it as text and
show all your nice code to the visitor.

Be aware that neither Mac OS nor Win-
dows always reveals a document’s real exten-
sion. Change your folder options, if necessary,
SO you can see extensions.

File name, in all

lowercase letters Extension

: ! B
buckminsterI-Fuller.html

Separate each word with a dash

File names with capital letters are
a pain to type and to communicate

Buckminster Fuller.html
I

Underscores are not as good for
search engine optimization as dashes

o Remember to use all lowercase letters for your file names, separate words with a dash, and add the .html
extension. Mixing upper- and lowercase letters makes it harder for your visitors to type the proper address
and find your page.

Correct approach
|
http://www.yoursite.com/notable-axchitects/20th-century/buckminster-fuller.html

http://uww.yoursite.com/NotableArchitects/20th_CENTURY/Buckminster_Fuller.html
|
Incorrect approach

0 Use all lowercase letters and dashes for your directories and folders as well. The key is consistency. If
you don’t use uppercase letters, your visitors (and you) don’t have to waste time wondering “Now, was that a
capital B or a small one?”

Web Page Building Blocks 19

URLs

Uniform Resource Locator, or URL, is a
fancy name for address. It contains infor-
mation about where a file is and what a
browser should do with it. Each file on the
Internet has a unique URL.

The first part of the URL is called the
scheme. It tells the browser how to deal
with the file that it is about to open. The
most common scheme you will see is
HTTP, or Hypertext Transfer Protocol. It is
used to access Web pages @).

The second part of the URL is the name

of the server where the file is located, fol-
lowed by the path that leads to the file, and
the file’s name itself. Sometimes, a URL
omits a file name and ends with a path,
which may or may not include a trailing for-
ward slash @. In this case, the URL refers
to the default file in the last directory in the
path, typically called index.html.

Other common schemes are https, for
secure Web pages; ftp (File Transfer Pro-
tocol), for downloading files @:; mailto, for
sending email ©:; and file, for accessing
files on a local hard disk or local file sharing
networks (you won'’t have occasion to use
the file scheme very often, if at all) 0.

A scheme is generally followed by a colon
and two forward slashes. mailto and news
are exceptions; these take only a colon.

Notice that the file scheme is followed by
a colon and three slashes. That’s because
the host, which in other schemes goes
between the second and third slashes, is
assumed to be the local computer. Always
type schemes in lowercase letters.

Of these schemes, you will use http and
mailto most frequently. The others are for
specialized cases.

Scheme Server name Path File name
|

| |
"http://wwu.site.com/tofu/index.html"

o Your basic URL contains a scheme, server
name, path, and file name.

Trailing forward slash

I
"http://www.site.com/tofu/"

0 A URL with a trailing forward slash and no file
name points to the default file in the last directory
named (in this case, the tofu directory). The most
common default file name is index.html. So, this
URL and the one from the previous example point
to the same page.

Scheme Server name Path File name
|

1 1 1
"ftp://ftp.site.com/pub/proposal.pdf"”

G When the user clicks this URL, the browser will
begin an FTP transfer of the file proposal.pdf.

Scheme Email address
|

|
"mailto:somename@somedomain.com"

0 A URL for an email address includes the
mailto scheme followed by a colon but no
forward slashes, and then the email address itself.

Scheme Dirive letter Path and file name

—L— L,
"file:///c|/path/home.htm"
L Vertical bar

G To reference a file on a local Windows
machine, use the file scheme. For Macintosh, use
file:///Harddisk/path/filename. No vertical bar
is required. (This sometimes works for Windows

as well.)

20 Chapter1

77 7
< e
il el

www.site.com www.remote.com

- about press
info L </> news.html
L </>| data.html sign-up

</> index.html |- </> index.html

D
|9 you-are-here.html

L img

L !‘ image.png

o The document that contains the URLs
(you-are-here.html in this case) is the reference
point for relative URLs. In other words, relative
URLs are relative to that file’s location on the
server. Absolute URLs will work no matter where
they are located, because they always contain the
full URL to a resource.

Absolute URLs

URLs can be either absolute or relative. An
absolute URL shows the entire path to the
file, including the scheme, the server name,
the complete path, and the file name

itself @. An absolute URL is analogous to
a complete street address, including name,
street and number, city, state, zip code, and
country. No matter where a letter is sent
from, the post office will be able to find the
recipient. In terms of URLs, this means that
the location of the absolute URL itself has
no bearing on the location of the actual file
referenced—whether it is in a Web page on
your server or another server, an absolute
URL to a particular file will look exactly the
same.

When you're referencing a file from
someone else’s server, you'll always use
an absolute URL. You'll also need to use
absolute URLs for FTP sites or, generally,
any kind of URL that doesn’t use an HTTP
protocol.

Table 1.1 describes how you would access
various files from you-are-here.html—both
those on the same site (site.com) as the
page and on another site (remote.com)—as
a way of illustrating the difference between
relative and absolute URLs.

TABLE 1.1 Absolute URLs vs. Relative URLs
Absolute URL

File name (can be used anywhere)

index.html http://www.site.com/about/index.html
data.html http://www.site.com/about/info/data.html
image.png http://www.site.com/img/image.png
news.html http://www.remote.com/press/news.html
index.html http://www.remote.com/sign-up/index.html

Relative URL
(only works in you-are-here.html)

index.html
/info/data.html
./img/image.png
(none: use absolute)

(none: use absolute)

Web Page Building Blocks 21

www.site.com
www.remote.com
http://www.site.com/about/index.html
http://www.site.com/about/info/data.html
http://www.site.com/img/image.png
http://www.remote.com/press/news.html
http://www.remote.com/sign-up/index.html

Relative URLs

To give you directions to my neighbor’s
house, instead of giving her complete
address | might just say, “it’s three doors
down on the right.” This is a relative
address—where it points to depends on
where the information originates. With the
same information in a different city, you'd
never find my neighbor.

In the same way, a relative URL describes
the location of the desired file with refer-
ence to the location of the file that contains
the URL reference itself. So, you might
have the URL say something like “link to
the xyz page that’s in the same directory as
this page.”

The relative URL for a file that is in the
same directory as the current page (that is,
the one containing the URL in question) is
simply the file name and extension @. You
create the URL for a file in a subdirectory
of the current directory by typing the name
of the subdirectory followed by a forward
slash and then the name and extension of
the desired file).

To reference a file in a directory at a higher
level of the file hierarchy, use two periods
and a forward slash @. You can combine
and repeat the two periods and forward
slash to reference any file on the same
server or drive as the current file.

Inside the current folder,
there’s a file called “index.htm/’..

l_l—l
"index.html"

@ The relative URL to link to a file in the same
folder (see (). Only the file’s name and extension
are required in the URL, rather than preceding
those with http://www.site.com/about/ (the
folder in which both files live).

Inside the current folder,
there’s a folder called “info”..

me n
info/data.html
I.l.ll_'_l
..that contains... ...a file called “data.html.”

0 To reference a file (data.html, in this example)
that is within a folder inside the current folder
(see (1)), add the sub-folder’s name and a forward
slash in front of the file name.

The folder that contains the current folder...

...contains... ... a folder called “img”
I_r-Lulu—‘—|—'

"../img/image.png"
I.l.ll_l_l
..that contains... ...a file called “image.png”..
o This file, as you can see in ,isin a folder

(img) that sits alongside the current folder (about)
in the site’s root directory. In that case, you use
two periods and a forward slash to go up a level,
and then note the subdirectory, followed by a
forward slash, followed by the file name. (In normal
practice, you’d choose a more descriptive image
file name than image.png, which is deliberately
generic for the example.)

22 Chapter1

http://www.site.com/about/

Alternatively, if your files are on a Web
server, you can avoid cumbersome file
paths such as ../../img/family/vacation
.jpg by first jumping straight to your site’s
root and then drilling down from there to
the targeted file. A single forward slash at
the beginning achieves this, so the root
relative URL in this case would be /img/
family/vacation.jpg (assuming the img
folder sits in the site’s root folder, which

is customary). Again, this only works on

a Web server, like at the hosting provider
that serves your site or one you’re running
locally on your machine (Apache is the
most popular choice for that).

If you aren’t developing your site locally
on a server, then generally you’ll want to
use relative URLs (except when pointing to
files on someone else’s server, of course).
They’ll make it easy to move your pages
from a local system to a server. As long as
the relative position of each file remains
constant, you won’t have to change any of
the paths, so the links will work correctly.

Web Page Building Blocks 23

Key Takeaways

The basics of HTML and some key best
practices provide the foundation for build-
ing effective Web sites. Let’s revisit the key
takeaways:

A Web page is primarily made up of
three components: text content, refer-
ences to other files, and markup.

HTML markup is composed of ele-
ments, attributes, and values.

It's customary to write your HTML in all
lowercase (DOCTYPE is an exception),
surround your attribute values with
quotes, and close empty elements with
a space and a forward slash (/).

Always begin your HTML documents
with the DOCTYPE declaration:

<IDOCTYPE html>

A page’s content goes in the body ele-
ment. Instructions primarily intended
for the browser and search engines are
before that, mostly in the head.

Mark up your content with semantic
HTML and without regard for how it
should appear in a browser.

Semantic HTML improves accessibility
and can make your site more efficient,
and easier to maintain and style.

CSS controls the presentation of HTML
content.

Each browser’s own style sheet dictates
the default presentation of HTML. You
can overwrite these rules with your

own CSS.

Create file and folder names in all low-
ercase, and separate words with a dash
instead of a space or underscore.

Next you’ll learn about how to work with
Web page files.

24 Chapter1

Working with Web
Page Files

Before you start writing HTML elements

and attributes, it’s important to know how In ThiS Chapter

to create the files in which you’ll use such

code. In this chapter, you'll learn how to Planning Your Site 26
create, edit, and save Web page files. I'l Creating a New Web Page 28

also touch on some planning and organiza-

) . . Saving Your Web Page 30
tional considerations.

Specifying a Default Page or Homepage 33

If you can’t stand waiting any longer and
already know how to create the actual files, Editing Web Pages 35
skip ahead to Chapter 3 where | begin to Organizing Files 36
explain the HTML code itself.

Viewing Your Page in a Browser 37

The Inspiration of Others 39

Planning Your Site

Although you can just jump in and start
writing Web pages right away, it’s a good
idea to first think about and plan your

site @). That way, you'll give yourself direc-
tion, and you’ll need to do less reorganiz-
ing later.

To plan your site:

m Figure out why you’re creating this site.
What do you want to convey?

m Think about your audience. How can
you tailor your content to appeal to this
audience?

® How many pages will it need? What sort
of structure would you like it to have?
Do you want visitors to go through your
site in a particular sequence, or do you
want to make it easy for them to explore
in any direction?

m Sketch out your site on paper.

m Devise a simple, consistent naming
convention for your pages, images, and

other external files (see “File Names” in
Chapter 1).

about us

company
history

archive
home

for
business

o Sketching out your site and thinking about
what it might contain can help you decide what
sort of structure it needs.

26 Chapter 2

Don’t overdo the planning phase of your
site. At some point, you’ve got to dig in and
start writing content and code.

If you’re not very familiar with the Web,
do some surfing first to get an idea of the
possibilities. You might start with the sites of
some of your competitors.

It's common, but not required, to map
your site’s folder structure to how it’s orga-
nized on paper (). See “Organizing Files.”

See Erin Kissane’s article “A Checklist for
Content Work” (www.alistapart.com/articles/a-
checklist-for-content-work/) for ideas about
how you might approach crafting your site’s
content. It’s a taste of her book, which elabo-
rates on the subject of content strategy.

Jason Beaird’s The Principles of Beauti-
ful Web Design (SitePoint, 2010) may inter-
est you if you’re a non-designer or novice
designer looking for guidance on how to
design an attractive, effective site.

Working with Web Page Files 27

www.alistapart.com/articles/a-checklist-for-content-work/
www.alistapart.com/articles/a-checklist-for-content-work/

Creating a New
Web Page

You don’t need any special tools to create
a Web page. You can use any text edi-
tor, even Notepad (@) and @), which is
included with Windows, or TextWrangler

(@ and @), which is a free download for
OS X (www.barebones.com/products/
textwrangler). (Macs include an editor
called TextEdit, but it has a bug in some
versions of OS X that makes it to difficult
to work with HTML files.)

To create a new Web page:
1. Open any text editor.

2. Choose File > New to create a new,
blank document

3. Create the HTML content as explained
in the rest of this book, starting with
Chapter 3.

4. Be sure to save your file as directed in
“Saving Your Web Page.”

& TextWrangler [T Fdit Texs View Search Window # § 8 Help

-] & New R St Document XN
o (n NeEw with Saaticnery 3
T i]]
. Open. = twith Clipboard)
e G ;
Open fram FTRSFTP Server 20 Text Window XN
Open File by Name. %D
Dpen Caunterpart TRt Disk Browser TN
Dpen R t
il FTP{SFTP Browser
Reopen Using Encading »

[Fiig] fdn Fermat View el

New [

0 Open your text editor. Type your HTML in

the blank document that appears, or choose

File > New. The exact menu option may vary
slightly. If you’re using TextWrangler (Mac), it's
File > New > Text Document, as shown (top). The
other image is Notepad (Windows) (bottom).

annD * | untitled text

untitied text

(New Document)

L e

| i none) 2| Unkcode [UTF-8) 2 [Unix(LF) =]) 0/0/1

0 On a Mac, you can use TextWrangler to write
the HTML code for your page. See the tips for a
list of Mac editors with more robust features for
writing code.

28 Chapter 2

www.barebones.com/products/textwrangler
www.barebones.com/products/textwrangler

Untitled - Notepad
File Edit Format View Help

G This is Notepad, the most basic program
Windows users can use to create HTML pages.
Several others are available (see the tips).

There are various text editors for OS X
and Windows that are specifically tailored

for coding HTML (and CSS). They have code
hinting and code completion features to help
you code more accurately and quickly, they
highlight code to make it easier to distinguish
between HTML elements and the text content
you’ve written within them, and they have
assorted other helpful features; Notepad
doesn’t have any of them. Some free HTML
editors are available, but the others are usually
worth the investment and often include a free
trial version you can test before making a
purchase.

Some popular editors for OS X are
BBEdit (www.barebones.com/products/
bbedit/), Coda (www.panic.com/coda/),
Espresso (http://macrabbit.com/espresso/),
Sublime Text (www.sublimetext.com),

and TextMate (http://macromates.com).
(TextWrangler is commonly thought of as
“BBEdit Lite”.) TextMate is the most popular
of these, though it has seen the competi-
tion encroach on its user base. Sublime Text
is also available on Windows, as are E Text
Editor (www.e-texteditor.com), Notepad++
(http://notepad-plus-plus.org), and many
others. Search online for “HTML editor” to
find more.

If you use an editor such as one men-
tioned in the previous tip, the process is
similar for creating a new page. And to edit an
existing page, just choose File > Open from
your text editor of choice and open the file
(see “Editing Web Pages”). Use the rest of this
book to add your own HTML and CSS to cre-
ate the page you want.

Don’t use word processors, like Microsoft
Word, to code your HTML pages. They may
add unnecessary or invalid code to your files.

Working with Web Page Files 29

www.barebones.com/products/bbedit/
www.barebones.com/products/bbedit/
www.panic.com/coda/
http://macrabbit.com/espresso/
www.sublimetext.com
http://macromates.com
www.e-texteditor.com
http://notepad-plus-plus.org

Saving Your Web Page

You create Web pages with a text edi-

tor, but they are meant to be viewed with
multiple browsers on multiple platforms.

To be accessible to all of these different
programs, you save Web pages in a univer-
sal “text only” format—without any of the
proprietary formatting that a word proces-
sor might apply.

So that browsers (and servers) recog-

nize Web pages and know to interpret

the markup they contain, Web page files
have the .html or .htm extension in their
file names; this also distinguishes these
files from plain text files that are not Web
pages. Although both work, it's customary
to use the .html extension, so | recommend
you use it for your files.

Because of that extension, a Web page’s
icon matches the system’s default
browser—not the editor with which the

file was written @). Indeed, when you
double-click a Web page file, it is opened
in a browser, not a text editor. This may be
great for testing a page in a browser, but
it adds an extra step to editing Web pages
(see “Editing Web Pages”).

To summarize, when you save your Web
page, you must save it in text-only format
with either the .html or.htm extension.

,3_’} webpoge i
& |

0 An Excel worksheet has the .xIsx extension

and is identified with the Excel icon (top). If you
double-click it, it is displayed in Excel. A Web page
file, no matter the text editor you create it with, has
the .html or .htm extension and is identified with
the default browser’s icon (Firefox, in this case). If
you double-click it, it is displayed in your default
browser (not in the text editor).

30 Chapter?2

File | Edit Format View

Mew

Open
Seve Ctrl=5

Save As. b

Page Setup.

Frint CiisP

9 Choose File > Save As
from your text editor.

) Browest Folders Encoding: [UTF-3 - Save Cancel

@ In Notepad, give your file a name with the .html
or .htm extension, choose Text Documents from
the “Save as type” drop-down menu, make sure
Encoding is set to UTF-8 (see the last tip), and click
Save. The options may be different (but similar) in
another text editor.

(3] * | untitled text
Save As: | basic.htm|

<~ |l 2 o] (Gwebsite Bl
TeS

Wy Applications

i Desktop

M Dacuments

0 Downloads

[2] Mavies

J9 Music

@ Pictures
SHARLE

W brucelaptop

Save as stationery
Line breaks: Unix (LF)

Encoding: Unicode (UTF-8)

New Folder Cancel | [Save]

0 In TextWrangler, give your file a name and
choose a location to save it. TextWrangler defaults
to UTF-8 (which is what you’ll want, except in
special cases), but you can make a different choice
from the Encoding drop-down menu (see the last
tip). Click Save to save the file.

To save your Web page:

1. Once you've created your Web page,
choose File > Save As from your text
editor ©.

2. In the dialog that appears, choose Plain
Text or Text Document (or however your
program words it) for the format.

3. Give the document the .html (prefer-
ably) or .htm extension. (This is very
important!)

4. Choose the folder in which to save the
Web page.

5. Click Save (@ and ©).

It doesn’t matter whether you use

.html or .htm, though .html is recommended
because it’s the common choice. Whichever
you use, be consistent, because using the
same extension will make it easier to remem-
ber your URLs later.

continues on next page

Working with Web Page Files 31

Some text editors on Windows may

add their default extension to your file name,
even if you’ve already specified .html or

.htm. (Note that this shouldn’t be a problem
with most editors designed specifically for
editing HTML pages.) Your file, now named
webpage.html.txt, won’t be properly viewed
in a browser. To make matters worse, Windows
often hides extensions so that the problem

is not completely obvious, especially to the
uninitiated. There are two solutions. The first
is to enclose your file name in double quotes
when you save your document the first time.
This should keep the extra extension from
being added. Next, you can tell Windows to
display file extensions G, SO you can see

the offending one and remove it from your

file name.

When you choose a text-only format,
your file is usually saved with your system’s
default character encoding. If you want to cre-
ate Web pages in another encoding (perhaps
to include special symbols or text in other
languages), you’ll have to use a text editor
that lets you choose the encoding. Typically,
UTF-8 is the best encoding choice. If your
editor has an option to save files encoded as
“UTF-8, no BOM,” “UTF-8, without BOM,” or
something similar, choose that. Otherwise,
choose UTF-8 0 In some cases, an editor’s
UTF-8 mode doesn’t include the BOM even if it
doesn’t explicitly note that fact in its encoding
menu. (See http://en.wikipedia.org/wiki/Byte_
order_mark if you’re curious about BOM’s
meaning. Be prepared to be enthralled!)

Folder Options

| Geneml [View | search

Folder views
You can apply th
¥ou are using for

uch as Details or lcons) that
rto all folders of Ype.

| Apply to Folders | l Reset Foloers

Advanced seitings:

3 -
ssic theme only)

m

Restore Defaults |

A

ok [Cancel][soov]

G From Windows Explorer, choose either
Organize > Folder and search options or Tools >
Folder Options (depending on your version of
Windows) to view this dialog. It may look different
depending on your version of Windows. Click

the View tab and scroll down until you see “Hide
extensions for known file types.” Make sure it is
deselected if you want to be able to see a file’s
extension (like .html) on the desktop.

Encodi
Unicode (UTF-16)

New Foldet Unicode (UTF-8, with BOM) Cancel Save |
Unicode (UTF-16, no BOM) e
Unicode (UTF-16 Little-Endian)
Unicede (UTF-16 Little-Endian, no BOM)

Chinese (GB 180300
Japanese (150 2022-1F)
Japanate (Mac 06)
Japanese (Shift JIS)

Korean (Mac O5)

Simplified Chinese (Mac OS)
Traditional Chinese (Mac 0S)
Western (150 Lazin 1)
Western (150 Latin 9)
Westarn (Mac 0% Roman)
Western (Windows Latin 1)

o Many text editors let you choose the encoding
for your file, so that you can save symbols and
characters from different languages in the same
document. UTF-8 is the recommended encoding in
most instances. Choose the UTF-8 no BOM option
if it’s available in your editor. Otherwise, choose
UTF-8. Some editors (like TextWrangler, shown
here) default to it.

32 Chapter2

http://en.wikipedia.org/wiki/Byte_order_mark
http://en.wikipedia.org/wiki/Byte_order_mark

Save As: index.html !-:!

Q Save the file as index.html in order to
designate the file as the default page that should
be opened in that directory.

LA SAGRADA FARILIA

PARK OUELL

0 When the visitor types the path to the
directory but omits the file name itself, the file
with the default name is used. | typed http://
bruceontheloose.com/htmlicss/examples/
antoni-gaudi/ in this example. If | had typed
http://bruceontheloose.com/htmlicss/examples/
antoni-gaudi/index.html instead, the same page
would have loaded.

Specifying a Default
Page or Homepage

Most Web servers have a system for recog-
nizing a default page in each folder, based
on the name of the file. In almost all cases,
index.html is recognized as the default
page @), though servers typically will then
look for file names like index.htm and
default.htm if index.html doesn’t exist. If
your visitors type a URL with a directory but
don’t specify a file name, the default file is

used ©.

The default page (typically index.html)
that you create at the top level of your
Web directory (often called the root) is
your site’s homepage. This is the page that
will appear when your visitors type your
domain with no additional path information:
www.yourdomain.com.

Similarly, you can create a default page

for any and every directory on your site.
For instance, the landing page (that is, the
main page) for a /products/ or /about-us/
directory in your site would also be called
index.html, but it would exist in its specific
folder. (A directory is just a folder, like the
ones you see on your computer’s drive.)
Visitors typically access these sections of
your site from your homepage or via main
navigation that exists on every page.

continues on next page

Working with Web Page Files 33

www.yourdomain.com
http://bruceontheloose.com/htmlcss/examples/antoni-gaudi/
http://bruceontheloose.com/htmlcss/examples/antoni-gaudi/
http://bruceontheloose.com/htmlcss/examples/antoni-gaudi/index.html
http://bruceontheloose.com/htmlcss/examples/antoni-gaudi/index.html
http://bruceontheloose.com/htmlcss/examples/antoni-gaudi/

To specify a homepage for
your site or a landing page
for a directory within it:

Save your file as index.html (see “Saving
Your Web Page”) in the desired folder. (If
index.html doesn’t work as the default
page on your site’s server when you
upload it per Chapter 21, consult your Web
hosting provider.)

If you don’t have a default page in each
directory, some servers may show a list of the
directory’s contents (which you may or may
not want to reveal to your visitors). To keep
those prying eyes out, create a default page
for every directory on your site that contains
HTML pages. Alternatively, you can change
the server setting so the list of files is hidden
(you can also show it if it’s already hidden).
Hiding the list is advisable for folders that
contain assets, such as your images, media
files, style sheets, and JavaScript files. Ask
your Web hosting provider for instructions on
how to do this.

34 Chapter 2

ooy [| Er—

o Some text editors in Windows, like Notepad,
can’t automatically see HTML files. Choose All
Files (or a similar option) if necessary to view files
with any extension.

= |Test Gocunsents ") -

0 Once files with any extension are displayed,
you can choose the desired HTML file and click
Open.

f_ Open
Open m Same Window

s
index bt Open with

Share with ' Nertpad [

Cheose defeull program...

* | @ Internet Explorer

Restore previous versions

Send to b
Cut

Copy

G In Windows, you can also right-click the
document’s icon or file name and then choose
Edit or Open With in the pop-up menu that
appears. On a Mac, right-click the icon, select
Open With in the pop-up menu, and then choose
the desired text editor.

Editing Web Pages

Because Web pages are most often
viewed with a Web browser, when you
double-click them on the desktop the
default browser cheerily opens up and
displays them. If you want to edit the Web
page, you’ll have to manually open it in
your text editor.

To edit Web pages:
1. Open your text editor.
2. Choose File > Open.

3. Navigate to the directory that contains
the desired file.

4. If you don’t see your file listed, choose
the All Files (or similar description)
option (@ and @). The name and loca-
tion may vary slightly from program to
program and platform to platform.

5. Click Open. Your file is ready to edit.

Once you’ve made changes to an already
saved document, you can usually simply
choose File > Save to save the changes,
without having to worry about the format (as
described in “Saving Your Web Page”).

Working with Web Page Files 35

Organizing Files

Before you have too many files, it's a good
idea to figure out where you’re going to
put them. It's customary (but not required)
to create a folder for each main section
within your site, allowing you to group
related HTML pages together.

To organize your files:

1. Create a central folder or directory to
hold all the material that will be avail-
able on your Web site. On the Mac,
choose File > New Folder in the Finder
0. In Windows, from the desktop (or
within a folder of your choosing), right-
click and choose New > Folder @. Give
the folder a name.

2. Create sub-folders in a way that reflects
the organization of your Web site (
and @). For instance, you may decide
to create a separate folder for each sec-
tion of your site, along with individual
sub-folders within those as necessary.

3. ltis common to create a top-level folder
for your site’s images and optionally
add sub-folders to help you organize
your images by section or other criteria.
Another approach is to create a top-
level folder named Assets (or some-
thing similar) and put your images folder
in that, along with folders for other
assets, such as video, style sheets, and
so on. (You'll learn about style sheets
beginning with Chapter 7.)

Use short, descriptive names for your
files and folders, preferably separating words
in a name with a dash (not a space). Use all
lowercase letters so that your URLs are easier
to type and thus your pages are easier to
reach. For more details on how to create good
file names, consult “File Names” in Chapter 1.

Neew Fander Window

New Smart Folder TEN
Mew Burn Felder

website

Get Info xl

Burn “Desitop” to Disc.

Find ®F

0 On a Mac, choose New Folder and then give
the folder a name. Create a separate folder for
each section of your site.

Arrange by » |
View - | Folder
Sort by » | ®] Shortcut
Group by Y | [& Bitmapimage
Hetresh @5 Contact
|# Journal Document

Rich Text Document

[fi

Text Document

¥ .
Sharcwatt | 4y Compressed (zipped) Folder
Mew 2 g Briefcase
Properties [

0 In Windows, from the desktop or Windows
Explorer, right-click and choose New > Folder.

0 You can divide the folder into sub-folders if
needed.

36 Chapter2

File Edit Miew History

Mew Tab Chrl+T
Tew Window Chrl+M

Open File... Chrl+0

Save Page As... Ctr4+s

Send Link...
Page Setup...
Print Prexiew o From the desired
Print... Chel+P browser (this is Firefox),
z choose File > Open File.
wark Offline i
iy In Internet Explorer, it’s
& called File > Open.
oveniie il
Lock e [photnbarcelona e e e
u,r}m:m_ Fils promer [t i =] MD!
2= e ol |88 Fies = Cancel

0 Choose the file that you want to open, and click
the Open button.

- AV A A . v
photobarcelona... #l

Boime + aBG s resoutce + Mrchiv

recent entries

Cathedral Clolster

G The page appears in the browser. Check it
over carefully to see if it's coming out the way you
planned.

Viewing Your Page
in a Browser

Once you've created a page, you'll want to
see what it looks like in a browser. In fact,
since you don’t know which browser your
visitors will be using—and browsers don’t
always render pages exactly the same
way—it's recommended to look at the page
in several browsers.

To view your page in a browser:
1. Open a browser.

2. Choose File > Open, > Open File, or >
Open Page (just not Open Location),
depending on the browser 0.

3. Inthe new dialog that appears, navigate
to the folder on your computer that
contains the desired Web page, select
the page, and click Open @. The page
is displayed in the browser @ just as it
will appear when you actually publish
it on your Web server (see Chapter 21).
These steps may vary slightly in differ-
ent browsers.

You can (usually) also double-click a Web
page’s icon to view it in a browser. Or, if you
already have a browser open, you can drag the
file icon or file name and drop it in the browser
window. That’s often the easiest way to view a
page in a browser once you get the hang of it.

continues on next page

Working with Web Page Files 37

Some modern browsers don’t have a
menu option equivalent to File > Open for
opening a page. Try the drag-and-drop method
described in the previous tip instead.

If your Web page does not appear in the
Open dialog, make sure that you have saved
it as text-only and given it the .html or .htm
extension (see “Saving Your Web Page”).

You don’t have to close the document
in the text editor before you view it with a
browser, but you do have to save it. If you
make a change to the page in your text edi-
tor after you’ve opened it in a browser, save
the file again and use the browser’s reload
button to refresh the page. (You could follow
the steps you used to view the page in the
browser initially, but that would take longer.)

Your visitors won’t be able to view your
Web site until you publish it to your Web
server (see Chapter 21).

38 Chapter 2

b Develup
Fage It B
Sast Prreste Browiing
Ciear Recent Histony

ok b i vy artien. They are wwesh
dedaition of epberarnl

0 All desktop browsers have a menu command
that lets you view a page’s HTML code. The
name varies from View Source to Page Source (in
Firefox, shown) to similar names. (In Chrome, it's
Tools > View page source.)

0 Most browsers will also let you right-click the
page and then choose the View Source command
(whatever it’s called) from the menu that appears.
Chrome is shown. This is often the easiest way to
view source, because it can be hard to find the
option in the main menu or sub-menu.

G Modern browsers display the code in their
own tab or window (as shown), whereas older
browsers may show it in a specified text editor.
Colors distinguish page content from HTML
elements, attributes, and attribute values. This is
called syntax highlighting. The line numbers on
the left are not part of the HTML code, and not all
browsers show them in their View Source modes.
They are just an indicator that Chrome includes in
its View Source window.

The Inspiration
of Others

One of the easiest ways to expand your
HTML fluency is by looking at how other
page developers and designers have
created their pages. Luckily, HTML code
is easy to view and learn from. However,
text content, graphics, sounds, video, style
sheets, and other external files may be
copyrighted. As a general rule, use other’s
pages for inspiration for your HTML, and
then create your own content.

To view other designers’' HTML
code with View Source:

1. Open a Web page with any browser.

2. Choose View Source (or the appropri-
ate choice for a particular browser)
(@ and @). The HTML code will be
displayed @.

3. If desired, save the file for further study.

To view other designers’' HTML
code with developer tools:

Another way to view a page’s source is
with a browser’s developer tools. The tools
are different for each browser vendor, but
they all have some features that overlap.

These tools show a more interactive view
of the source code. You can inspect the
HTML and CSS for specific parts of a page,
edit it in the browser, and see the changes
reflected in the page immediately. And
you can use them on any site, not just your
own. The changes are temporary—they
don’t write over the actual HTML and CSS
files the page loaded. This is valuable for
learning, because you can see how a par-
ticular effect was achieved or fiddle with

Working with Web Page Files 39

the code to see what happens with no fear
of damaging anything.

See the “Browser Developer Tools” sidebar
in Chapter 20 for information about the
browser developer tools for both modern
and older browsers.

There’s no rule about who gets to put

a site on the Web. That’s what’s so great
about it—it’s an open medium with a relatively
low barrier to entry. You can be a novice, an
expert, or anywhere in between. Keep this in
mind when you review the code from other
sites. If some of the code looks fishy, don’t
assume its author knows better than you just
because their site is on the Web. There are
plenty of sites that serve as great examples of
coding best practices, and there are plenty of
others that are, shall we say, less than ideal.
So keep a critical eye, and check this book
and other resources when in doubt about the
appropriateness of a particular technique.

You can also save the source code by
copying it from the View Source window and
pasting it into your text editor. Then you can
save the file.

You can also save the source code and
typically many of its assets (such as images)
by selecting File > Save As (or File > Save Page
As) in most browsers. However, the browser
may rewrite portions of the code when saving
the page, so it won’t be exactly the same as if
you’d saved it using the previous tip.

For viewing the CSS in a Web page, see
“The Inspiration of Others: CSS” in Chapter 8.

40 Chapter 2

Basic HTML
Structure

This chapter covers the HTML elements

you need to establish the foundation and

structure of your documents. That is, the

outline and primary semantic containers for

your content.

You'll learn about:

m Starting a Web page

m The HTML5 document outline

m The hi1-h6, hgroup, header, nav,

article, section, aside, footer, and

div elements (most of which are new
in HTML5)

= How ARIA role attributes can improve

your page’s accessibility
m Applying a class or id to elements

= Applying the title attribute to
elements

m Adding comments to your code

In This Chapter

Starting Your Web Page
Creating a Title
Creating Headings

Understanding HTML5’s Document
Outline

Grouping Headings

Common Page Constructs

Creating a Header

Marking Navigation

Creating an Article

Defining a Section

Specifying an Aside

Creating a Footer

Creating Generic Containers
Improving Accessibility with ARIA
Naming Elements with a Class or ID
Adding the Title Attribute to Elements
Adding Comments

43
46
48

50
58
60

61
64
68
72
75
80
84
88
92
95
96

Creating a clear and consistent structure
not only sets up a good semantic founda-
tion for your page, but also makes it that
much easier to apply styles to your docu-
ment with Cascading Style Sheets (CSS)
(coverage begins in Chapter 7).

If you haven’t done so already, | strongly
suggest you read Chapter 1 before con-
tinuing. It shows a simple HTML page and
explains some of the basic concepts. Since
that is your first glimpse at a Web page, I'll
repeat some (but not all) of the information
here and assume you’re familiar with the
rest so you can build on those ideas.

Also, if you've read my book The HTML
Pocket Guide, some of this material will be
familiar to you.

42 Chapter 3

o Here’s the foundation of every HTML page.
The indentation doesn’t matter, but the structure
is crucial. In this example, the default language
(per the 1lang attribute) is set to en for English. The
character encoding is set to UTF-8.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8" />
<titler</title>

</head>

<body>

</body>
</html>

¥) Mozilla Firefox =loix|

Filz EdiL ¥iew Hislury Buukinarks Touls Help

|] http:,f,l’bruoeonthebos...er-DS,l’start-page.hmiI + | x

0 The minimal HTML foundation code as viewed
in Firefox. As you can see, there’s nothing to see!
However, you'll start adding content soon enough.

Starting Your
Web Page

At its most basic level, each of your HTML
documents should contain the following
components, as shown in @):

= The DOCTYPE

® The html element (with the lang
attribute, which is optional but
recommended)

m The head element

m The character encoding in a meta
element

m The title element (you’ll add its con-
tent in a bit)

m The body element

This is the HTML equivalent of a blank
sheet of paper, since it doesn’t have any
content in the body ©.

So, before you add any content or other
information, you need to set up the founda-
tion of your page:

To start an HTML5 page:

1. Type <IDOCTYPE html> to declare your
page as an HTML5 document. (See the
“HTML5’s Improved DOCTYPE” sidebar
for information relative to previous ver-
sions of HTML.)

2. Type <html lang="language-code"> to
begin the actual HTML portion of your
document, where language-code is the
language code that matches the default
language of your page’s content. For
instance, <html lang="es"> for English
or <html lang="fr"> for French. See
www.bruceontheloose.com/references/
language-codes.html for a list of avail-
able language codes.

continues on next page

Basic HTML Structure 43

www.bruceontheloose.com/references/language-codes.html
www.bruceontheloose.com/references/language-codes.html

3. Type <head> to begin the document
head of your page.

4. Type <meta charset="UTF-8" /> to
declare the character encoding of your
document as UTF-8. If you prefer, you
may also type it as utf-8 in your HTML.
Also, the space and forward slash are
optional, so <meta charset="UTF-8">
works just the same. (Character encod-
ings besides UTF-8 are valid too, but
UTF-8 is the most versatile, so it’s rare
that you’d need to deviate.)

5. Type <title></title>. This will contain
your page’s title. You’ll add title text in
the “Creating a Title” section.

6. Type </head> to end the document
head of your page.

7. Type <body> to start the body of your
page. This is where your content will go
(eventually).

8. Leave a few blank lines for creating
your page content, which you’ll do
throughout the rest of this book.

9. Type </body> to end the body.
10. Type </html> to end your page.

That'’s a pretty healthy number of steps,
but since all your pages will start that way,
you could use a single HTML page as

the template from which to begin every
page, saving yourself some typing. In fact,
most code editors allow you to specify the
starter code for each new page, making it
even easier. If you don’t find a Settings or
Preferences menu in your editor, search its
Help section.

A page’s two sections:
head and body

Just as a quick recap of what you learned
in Chapter 1, HTML pages are divided into
two sections: the head and the body

The DOCTYPE, which starts each page, is
a preamble of sorts.

The document head is where you define
the title of your page, include informa-
tion about your page for search engines
like Google, load style sheets, and occa-
sionally load JavaScript files (though, for
performance reasons, it's preferable most
of the time to load JavaScript right before
the end </body> tag at the bottom of your
page). You'll see examples of these as you
progress through the book. Except for the
title, which you’ll cover more in just a
bit, the content of the head is not visible to
users when they visit your page.

The body element encloses your page’s
content, including text, images, forms,
audio, video, and other interactive content.
In other words, the stuff your visitors see.
There are several chapters dedicated to
HTML's content-related elements, some

of which you’ll get an early look at in this
chapter.

44 Chapter 3

The HTML5 DOCTYPE makes sure
browsers render in a reliable mode and tells
the HTML validators to judge your code
against HTML5’s allowed elements and syntax.
HTML validators are discussed in Chapter 20.

HTML5’s DOCTYPE isn’t case sensi-

tive. For instance, some choose to type it as
<!doctype html>, but it’s probably more com-
mon to use <!DOCTYPE html>

The html element, which follows the

DOCTYPE, must enclose all other elements in
your page

HTML5's Improved DOCTYPE

Be sure your code editor is configured

to save files as UTF-8 to match the charac-

ter encoding specified in the code by <meta
charset="UTF-8" /> (). (Or if you’ve speci-
fied a different charset, save your files in
that.) Not all editors will save your pages

as UTF-8 by default, but most do allow you

to choose the encoding from a menu or in

a panel (see “Saving your Web Pages” in
Chapter 2). Without the UTF-8 setting in place,
you may occasionally see funny characters in
your content instead of an intended letter such
as an accented i or an n with a tilde (“).

You don’t have to indent the code that
is nested in the head element (). However,
the benefit of doing so is that you can see at
a glance where the head begins, what’s in
it, and where it ends. It’s not unusual for the
head to become very long in some pages.

Oh, how much simpler it is to start your Web page now that HTML5 is here. HTML5’s DOCTYPE is
refreshingly short, especially when compared to the DOCTYPEs of yore.

In the days of HTML 4 and XHTML 1.0, there were several DOCTYPEs from which to choose, each
signifying both the version of HTML and whether it was in Transitional or Strict mode. You invari-
ably had to copy them from somewhere else because they were too convoluted to remember.

For instance, here’s the DOCTYPE for XHTML Strict documents.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-strict.dtd">
Gobbledygook.

Luckily, all browsers—both old and new—understand HTML5’s DOCTYPE, so you can stick with it
for all your pages and forget the other ones ever existed. (The only time they might be relevant is if
you inherit an older site and the owner doesn’t permit you to change the DOCTYPE to the HTML5

version.)

Basic HTML Structure 45

Creating a Title

The HTML foundation code in the previous
section had <title></title> as a place-
holder until it was time to discuss title
further. Now’s the time!

Each HTML page must have a title
element. A title should be short, descrip-
tive, and unique to each page @. In most
browsers, the title appears in the title bar
of the window (Chrome is one exception)
©. It also appears on the page’s tab in
browsers that support tabbed brows-
ing—in other words, all the major browsers
released in the past several years. The title
also shows in your visitors’ browser history
lists and bookmarks @.

Perhaps even more importantly, the title is
used by search engines like Google, Bing,
and Yahoo! both to get a sense of your
page’s content and typically as the link that
appears in their search results).

In short, make your title unique for each
page to improve search engine results and
make your visitors’ experience better.

|Hi§t0ry Bookmarks Tools Help

Showe All History Cerl+Shift-+H
G The title also
appears in your
%_ visitor’s History
pane (shown),
Favorites list, and
Bookmarks list.

|J &ntani Gaudi - Introduction

Restare Previous Session
Recently Closed Tabs 3
Fecently Closed Windows 3

0 The title element must be placed in the
head section. Place it after the meta element that
specifies the character encoding.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8" />
<title>Antoni Gaudi - Introduction

</title>
</head>
<body>

</body>
</html>

) Antoni Gaudi - Introduction - Mozilla Firefosx

File Edit ‘iew History Bookmarks Tools Help

| || Antoni Gaudi - Introduction | + |

O Antani Gaudi - Introduction

0 In most browsers, like Firefox, the title of a

Web page is displayed both in the title bar of the
window and on the tab. However, Chrome (bottom)
displays the title on the tab only.

Web |Images Groups News

GO L)gle fantoni gaudi cookwood

Web Results 1 - 5 of about 18 for antoni gaudi

Antoni Gaudi - Introduction

Many tourists are drawn to Barcelona to see Antoni Gaudi's inc
Barcelona celebrates the 150th anniversary of Gaudi's birth in 2
www.cookwood.com/htmi5ed/examples/foundation/div.html - 2

0 Perhaps most importantly, the title is typically
used as the linked text pointing to your page in
search results from Google and others. It’s also
an important factor for determining a page’s
relevance in search results. Here you see a title
and partial body copy showing up in Google.

46 Chapter 3

A Deeper Look at Page Titles

Many developers—even well-intentioned,
fairly experienced ones—give little
consideration to the title element.
They’ll simply input the name of their site
and then copy it across all HTML pages.
Or even worse, they’ll leave the title
text that their code editor may insert by
default. If one of your goals is to drive
traffic to your site, you’d be doing your-
self and your potential readers a huge
disservice by following suit.

Search engines have different algorithms
that determine a page's rank and how its
content is indexed. Universally, though,
title plays a key role. Search engines
may look to the title for an indication
of what a page is about, and index a
page's content in search of related text.
An effective title focuses on a handful
of key words that are central to a page's
content.

As a best practice, choose title text
that briefly summarizes a document's
content to benefit both screen reader
users and your search engine rankings.
Secondarily, and optionally, indicate your
site's name in the title. It's common to
see a site’s name at the beginning of the
title, butit’s better to put the unique,
page-specific title text at the begin-
ning instead.

| recommend you get your title's

core message into the first 60 charac-
ters, including spaces, because search
engines often cut them off in their results
at around that number (as a baseline).
Browsers display a varying number of
characters, but no more than 60, in the
title bar at the top of the browser before
cutting off the text. Browser tabs cut off
the title even sooner because there’s
less real estate.

To create a title:

1. Place the cursor between <title> and
</title> in the document head.

2. Enter the title of your Web page.

The title element is required.

A title cannot contain any formatting,
HTML, images, or links to other pages.

Some code editors pre-populate the
title with default text when you start a new
page unless you’ve instructed it to use specific
starter code as described in “Starting Your
Web Page.” So be on the lookout for that,

and be sure to replace any default text with a
title of your own making.

If your title contains special charac-
ters like accents or some symbols, you’ll have
to either make them part of your encoding
(which typically won’t be an issue if you’re
using UTF-8) or write them with references
(see the list of available character entity
references at www.elizabethcastro.com/html/
extras/entities.html). Also, don’t forget to set
your code editor to save your pages with the
proper encoding, such as UTF-8, so the special
characters are saved properly (see “Saving
Your Web Pages” in Chapter 2).

Basic HTML Structure 47

www.elizabethcastro.com/html/extras/entities.html
www.elizabethcastro.com/html/extras/entities.html

Creating Headings

HTML provides six heading levels for
establishing the hierarchy of information

in your pages. Mark up each heading with
one of the h1—h6 elements, where hl is a
top-level heading, h2 is a subheading of an
ha, h3 is a subheading of an h2, and so on.
Headings are among the most important
HTML elements in any page, as you will
learn.

Think of the hi—h6 headings as similar to
headings within a non-HTML document
you might write, like a sales report, term
paper, product manual, news article—you
get the idea. When you write those types
of documents, you identify each major
section of content with a heading and
any number of subheadings (and sub-
subheadings, and so on), as appropriate.
Collectively, those headings represent
the document’s outline. The same is true
for your Web pages @. | discuss this in
greater depth in the next section, “Under-
standing the HTML5’s Document Outline.”

To organize your Web
page with headings:

1. In the body section of your HTML docu-
ment, type <hn>, where n is a number
from 1to 6, depending on the level of
importance of the heading that you
want to create. h1 is the most important,
and hé is the least important.

2. Type the contents of the header.

3. Type </hn> where n is the same num-
ber used in step 1.

o Use headings to define your document
structure, just like an outline. Here, "La Casa

Mila" and "La Sagrada Familia"—marked up as

h2 elements—are subheadings of the top-level
heading, "Antoni Gaudi," because it’s an h1. (The
lang="es" portion indicates that the content is

in Spanish; it doesn’t affect the outline.) If "La
Sagrada Familia" were an h3 instead, then it
would be a subheading of "La Casa Mila" (and a
sub-subheading of "Antoni Gaud{"). The blank line
between each heading is entirely optional and
has no bearing on the content’s display. If | were
coding the rest of the page right now, the related
content (paragraphs, images, video, and so on)
would follow each heading. You’ll see examples of
this on subsequent pages.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8" />
<title>Antoni Gaudi - Introduction

</title>
</head>
<body>

<h1>Antoni Gaudi</h1>
<h2 lang="es">La Casa Mila</h2>
<h2 lang="es">La Sagrada Familia</h2>

</body>
</html>

48 Chapter 3

1) nntoni Gaud! - Introduction - Mozilla Firefox
e Bt yew Hglory Bockmerks ok Hel

T -

| |1 Ankoni Gaudi - Introduction

Antoni Gaudi
La Casa Mila

La Sagrada Familia

) pefault display of hi-h6 - Mozilla Firefox _i1o] x|

Ble B Wiew Hidoy Bokmarks Taob Help

| Default dsplay of hi-ho

This is a heading level one (h1)

This is a heading level two (h2)
This is a heading level three (h3)

Tlas 15 a heading level four (ha)

This s a heading level flve (nn)

This is a heading level six {5}

0 While all headings display in boldface by
default, h1 is in a larger font than h2, which is
larger than h3, and so on. But as you know,

the appearance isn’t relevant when deciding
which heading level to use. You can change the
presentation with CSS.

Your h1-h6 headings are especially
important because of their impact on defin-
ing your page’s outline. By default, brows-

ers display headings progressively smaller
moving from h1 to h6 . But don’t forget to
choose your heading levels solely based on
what hierarchy is appropriate for your content,
not on how big or small you want the text

to appear. This makes your page stronger
semantically, which in turn improves both SEO
and accessibility. You can style the headings
as you please with a particular font, size, color,
and more. For details about achieving this with
CSS, consult Chapter 10.

Search engines weigh your headings
heavily, particularly the likes of h1 (which is
not to say load your page up with his; search
engines are wise to that). Meanwhile, screen
reader users often navigate a page by head-
ings via the keyboard, because it allows them
to quickly assess a page’s content and find
what most interests them without having to
listen through the whole page. All the more
reason to have a logical headings hierarchy.

Use the heading levels consistently
throughout your site for a better user
experience.

You may add an id to a heading if you
want to create a link directly to it (see “Creat-
ing Anchors” in Chapter 6).

As a side note, in () | used the lang
attribute on each h2 to indicate that its con-
tents are in a different language (Spanish,
represented by the language code es) than
the page’s default (English) as declared by
<html lang="en">.

Basic HTML Structure 49

Understanding
HTML5's Document
Outline

In the previous section, you learned that
the headings elements, hi—h6, contrib-
ute to your HTML page’s outline. You’re
going to dig under the hood more in this
section to learn how a handful of elements
unique to HTML5 also affect the outline.

One syntactical note before you continue.
In the discussion and pages to follow, I'll
often use “section” as a generic term to
mean a distinct part of a page, as opposed
to the section element (which you’'ll learn
about) specifically. When | am referring

to the section element, the word will

be styled like code just like it is in this
sentence.

OK, carrying on.

So, you know that each HTML document
has an underlying outline, which is like

a table of contents, as defined by the
heading elements. Now, the outline isn’t
something that displays in your page
explicitly—though browsers may one day
provide a means to see it—but as with all
semantics, it's meaningful to the likes of
search engines and screen readers, which
use the outline to glean the structure of
your page and provide the information
to users.

50 Chapter3

o Version 1 document outline

<body>
<h1>Product User Guide</hi>
<h2>Setting it Up</h2>
<h2>Basic Features</h2>
<h3>Video Playback</h3>
<h2>Advanced Features</h2>

</body>

</html>

0 Version 2 document outline (same outline as
Version 1, but with more meaningful markup)

<body>
<h1>Product User Guide</h1>
<section>
<h1>Setting it Up</h1>
</section>
<section>
<h1>Basic Features</h1>
<section> <!-- nested, so it's a
subsection of its parent -->
<h1>Video Playback</h1>
</section>
</section>
<section>
<h1>Advanced Features</h1y>
</section>
</body>
</html>

In the versions of HTML and XHTML that
preceded HTMLS5, the hi—h6 heading
elements were all you had to structure

the outline. HTML5, on the other hand,
includes four sectioning content ele-
ments—article, aside, nav, and sec-
tion—that demarcate distinct sections
within a document and define the scope of
the hi-h6 (as well as header and footer)
elements within them.

This means that each sectioning element
has its own h1-hé hierarchy, which is a big
shift from previous versions of the lan-
guage. Also, not only is more than one h1
in a page OK, it’s generally recommended
by the HTMLS5 spec (however, hold that
thought; pretty soon I'm going to explain
why you should limit your has).

All of this affects the outline. Let’'s compare
two equivalent outlines to see how this
works. For both, imagine that each heading
is followed by a series of paragraphs and
other content representing the section’s
information.

The first outline, which is perfectly valid
HTML5 and will be familiar to those of you
with HTML and XHTML experience, uses
heading elements only @.

The second version @ uses both headings
and HTML5’s section elements, includ-
ing one nested section. (Note: The code
indentation is unimportant and doesn’t
affect the outline, but it does make it clear
to you which elements are contained in
others.)

Basic HTML Structure 51

Earlier, | mentioned that browsers don’t
yet expose the outline to you. However,
you can check it with Geoffrey Sneddon's
HTML 5 Outliner (http://gsnedders.html5.
org/outliner/), a simple but great tool that
presents a visual representation of your
document’s outline. Using it to generate
outlines for Versions 1and 2 (&) and ©9)
shows that even though their ha—h6 head-
ing levels are different, both result in this
outline:

1. Product User Guide
1. Setting it Up
2. Basic Features
1. Video Playback
3. Advanced Features

As you can see, each section element
in Version 2 becomes a subsection of
its nearest h1—h6 or sectioning content
ancestor (which is also section, in this
case). The same behavior is true of all
four HTMLS5 sectioning content elements
| mentioned earlier (article, aside, nav,
and section), even when they’re mixed
together.

By comparison, if Version 2 had no
sections—let’s call it Version 3 @—its
outline would be very different.

Namely, each heading would be at the
same importance level, ha, meaning that
there wouldn’t be any subheadings (or
sub-subheadings):

1. Product User Guide
2. Setting it Up

3. Basic Features

4. Video Playback

5. Advanced Features

G Version 3 document outline (not the same
outline as Versions 1and 2)

<body>
<h1>Product User Guide</h1>
<h1>Setting it Up</h1>
<h1>Basic Features</h1>
<h1>Video Playback</h1>
<h1>Advanced Features</h1>

</body>

</html>

52 Chapter 3

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/

0 Sample outline with explicit semantics

<body>
<article>
<h1>Product User Guide</h1>
<section>
<h1>Setting it Up</h1>
</section>

<section»
<h1>Basic Features</h1>
<sectiony
<h1>Video Playback</h1>
</section>
</section>

<section>
<h1>Advanced Features</h1>
</section>
</article>
</body>
</html>

Of the outlines with the same meaning
(that is, Versions 1 and 2), both are valid
HTMLS5, but the second is preferable
because the section elements are more
explicit semantically. In practice, you could
wrap one article element around all

of Version 2’s content, since that’s even
more appropriate in this context (though
the resulting outline is slightly different).
Figure @ shows an example.

Don't forget, too, that each heading would
be followed by its related text, images, and
other content, which you’ll learn about as
you progress. But for now, I've left all of
that out so you can focus on learning about
headings and outlines.

Doing what you can in
today’s ecosystem

But, wait! There’s another adjustment you
should make to the code. Remember when
| said to “hold that thought; pretty soon I'm
going to explain why you should limit your
h1s”? While it is true that each sectioning
content element (axrticle, aside, nav, and
section) may begin its heading hierarchy
with ha, it isn’t mandatory. In fact, for the
foreseeable future, you're better off start-
ing each with an h2 or lower if they are

to represent a subheading of an already
existing ha for a related chunk of content.

Here’s why.

There are a lot of moving parts in the ever-
evolving world of the Web. New specifica-
tions like HTML5 change daily until they
are final (which takes years, and hasn’t yet
happened for HTML5). New browser ver-
sions are released. New versions of screen
readers and other assistive technologies
are developed and released. None of this
happens in perfect synchronicity.

Basic HTML Structure 53

Instead, each browser tends to add capa-
bilities incrementally (mostly a very good
thing), and not necessarily the same ones
as their competitors (not so good), and
certainly not on the same schedule as their
competitors. The same goes for screen
readers. So, although modern browsers
support a lot of HTML5’s features, none at
the time of this writing exposes HTML5’s
document outline to screen readers, and
screen readers don't expose it to users.

In short, this means that screen readers
and other assistive technologies don’t yet
distinguish between an h1 that’s directly in
body, and an h1 that sits inside an arti-
cle, aside, nav, or section. They are all
top-level his from their perspective. Bruce
Lawson, noted Web evangelist for Opera,
was the first person I’'m aware of to point
this out (www.brucelawson.co.uk/2009/
headings-in-html-5-and-accessibility/;

be aware that some other information at
this URL is outdated because specs have
changed since. See, too, his more recent
Introducing HTMLS5, which he wrote with
Remy Sharp).

Meanwhile, screen reader users don’t have
the luxury to wait for the Web to catch

up with their needs. They will continue to
leverage headings both to get an overview
of a page's content and to navigate pages
as they regularly have. A meaningful hier-
archy of headings makes this easier and
makes for a better experience for them on
your site.

54 Chapter 3

www.brucelawson.co.uk/2009/headings-in-html-5-and-accessibility/
www.brucelawson.co.uk/2009/headings-in-html-5-and-accessibility/

G Version 4 (the recommended approach to
headings out of all four versions)

<body>
<article>
<h1>Product User Guide</h1>
<section>
<h2>Setting it Up</h2>
</section>

<section>
<h2>Basic Features</h2>
<section>
<h3>Video Playback</h3>
</section>
</section>

<section>
<h2>Advanced Features</h2>
</section>
</article>
</body>
</html>

So until the ecosystem catches up a bit,
you and your users are better off if you
use headings that indicate the hierarchy
explicitly with ha—he, just as you would if
sectioning elements weren’t present. Law-
son and others in the field recommend this
approach, me included.

Let’s see how to do it @.

What used to be his in the first level

of section elements are now h2s, and

the Video Playback heading thatis in a
section nested in another section is
now an h3 instead of an h1. The document
outline hasn’t changed, only the heading
levels.

This example only demonstrates hi—h3,
but use h4—h6 as well in your pages if
your content demands it. For instance, a
subheading of Video Playback would be
an h4 (with or without a parent sectioning
element, as you see fit), and so on.

And remember, this recommendation holds
true for all sectioning elements—axrticle,
aside, nav, and section—not just the ones
shown in the example.

Basic HTML Structure 55

Wrapping it up

| suggest re-reading this discussion about
HTML5’s document outline if any of it didn’t
quite sink in. It's not nearly as involved as

it might seem. | highly recommend you
create a variety of test pages and compare
the results in the HTML5 Outliner to get a
better feel for how the outline algorithm
works. Use the Outliner during your project
work, too, to ensure your structure is as
intended. First, be sure you validate your
HTML5 pages at either http://validator.nu/
or http://validatorw3.org/ to check for any
coding errors (see “Validating Your Code”
in Chapter 20).

Please don’t get the impression that you
always must use an article, or that a sec-
tion must always (and can only) be nested in
an article. The example we discussed was
just one way to use these elements, and, in
fact, that same content could be marked up

a few different ways and would still be valid
HTMLS. | explain article and section more
later in this chapter, and as you’ll see, they
have a few applications, depending on your
content.

56 Chapter3

http://validator.nu/
http://validator.w3.org/

How HTML5's Outline Algorithm Helps with Syndicated Content

If you’ve been following along so far, you’ve seen that—by virtue of being sectioning content and
the rules of HTML5’s outline algorithm—each article, aside, nav, and section has its own out-
line that may begin with ha and continue through hé.

Besides allowing a lot of flexibility with your document’s headings, this has one not-so-obvious
benefit: It allows your content to appear on other pages, even other sites, without wreaking havoc
on the parent document’s outline. And jts outline remains intact, too.

Nowadays, content is shared between sites more than ever. You have news aggregation sites,
blogs with RSS feeds, Twitter feeds, and so on. As you’ll learn in “Creating an Article,” the article
element represents a self-contained composition that could be syndicated (not must be, just that it
would be appropriate to do so).

Imagine that the following article from one site is displayed on another site:

<h2>News from around the Web</h2>

<article>
<hi>Local Teen Prefers Vinyl over Digital</hi1>

<p>A local teen has replaced all her digital tracks with vinyl. "It's
groovy," she said, on the record.</p>

<h2>Hooked after First Album</h2>
</article>

Checking the code with the HTML5 Outliner, you see this:
1. News from around the Web
1. Local Teen Prefers Vinyl over Digital
1. Hooked after First Album

So, even though the Local Teen heading is a higher rank (h1) than the h2 it sits under, it’s a sub-
heading of the h2 because it’s contained in an article under that heading. And the Hooked h2 is
a sub-subheading of the News h2, not on equal standing.

The News heading could be an h3, an h4, or any heading level, and the outline would be exactly
the same. The same is true for Local Teen and Hooked, as long as Local Teen has the higher-
ranked heading.

Basic HTML Structure 57

Grouping Headings o Two related headings are grouped together.

In this example, the h2 is a subheading of the

. . : article’s h1 headline. Because it's marked up with
Sometimes a heading has multiple con the highest-ranking heading, only “Giraffe Escapes

secutive levels, such as with headline from Zoo” appears in the document outline, but
subheadings, alternative titles, or tag lines. both display in the browser, as expected

. . oy Similarly, if a second h1 appeared after it in the
Grouping them in an hgroup element indi hgroup, it would be omitted from the outline just
cates they are related @). Each hgroup may like the h2. Also, since the h2 doesn’t appear in the
contain only two or more hi—h6 headings; outline, the next heading in the article could be h2

(rather than h3) and be understood to be a direct
no other elements are allowed. subheading of the h1, “Giraffe Escapes from Zoo.”

Only the first instance of the highest-

ranked heading in an hgroup appears in cbody>

the document outline (see “Understand-
ing HTML5’s Document Outline”). So that <article>
could be another deciding factor for you <hgroup>

<h1>Giraffe Escapes from Zoo</h1>
<h2>Animals Worldwide Rejoice</h2>
</hgroup>

when choosing to use hgroup. To be clear,
though, all headings in an hgroup display
in the browser ©@.

<p>... [article content] ...</p>
</article>

</body>
</html>

) hgroup example - Mozilla Firefox -0 x|
Eile Edit ‘Wew History Bookmarks Tools Help

| | | haroup example | + | ¥

Giraffe Escapes from Zoo

Animals Worldwide Rejoice

0 Both headings display in the browser just like
they would if they hadn’t been contained in an
hgroup.

58 Chapter 3

To group two or more headings:
1. Type <hgroup>.

2. Type <hn>, where n is a number from
1to 6, depending on the level of impor-
tance of the heading that you want to
create.

3. Type the contents of the header.

4. Type </hn> where n is the same num-
ber used in step 2.

5. Repeat steps 2 through 4 for as many
headings as you want to be part of the
hgroup. Typically, the heading level for
each subsequent heading would incre-
ment by one (for example, from h1 to
h2, and so on).

6. Type </hgroup>.

@D Don’t use hgroup around just one head-
ing. It’s intended for at least two.

As mentioned, only the first instance of
the highest-ranking heading in an hgroup
appears in the document outline. The order of
the headings is irrelevant. So if your hgroup
had an h3 followed by an h2, the h2 would be
in the outline. Typically, you’ll order headings
by priority level, though, so a lower-ranked
one (like h3) wouldn’t precede a higher-ranked
one (like h2). You might encounter the occa-
sional exception.

Basic HTML Structure 59

Common Page
Constructs

No doubt you’ve visited dozens of sites
arranged like the one shown in @. Strip-
ping away the content, you can see that
there are four main components: a mast-
head with navigation, an article in the main
content area, a sidebar with tangential
information, and a footer @.

Now, you can’t style a page like this) or
arrange it as shown () and @) without
CSS. You'll start learning CSS in Chapter 7,
see how to format text and add colors
beginning in Chapter 10, and do a multi-
column layout in Chapter 11.

However, the semantics that apply to
these common page constructs are pretty
similar no matter the layout. You’ll explore
them for most of the remaining pages of
this chapter. Working from the top of the
page down, you’ll see how to use the
header, nav, article, section, aside, and
footer elements to define the structure
of your pages, and then how to use div as
a generic container for additional styling
and other purposes. Except for div, none
of these elements existed until HTML5.
You’ve already caught a glimpse of some
of them in previous code examples and
discussions.

As you learn about these elements, don’t
get too attached to where they display in
the sample layouts, and instead focus on
their semantic meaning.

In the ensuing pages, you'll also get an
early look at some other elements, such as
ul (unordered list) and a (for links). Those

will be properly explained in later chapters.

BARCELONA'S ARCHITECT

Brehiteeturs] Wonders.
of Barcelona

LA SAORADA FAMILIA

0 A common layout with main navigation along
the top, main content on the left, a sidebar on the
right, and the footer at the bottom. CSS is required
to make the page look like this.

Masthead'header with navigation

Main page content Related, but
tangential
information

Footer

0 The types of information commonly found in a
page. This is just one type of arrangement, though
a common one.

60 Chapter 3

o This header represents the header for the
whole page. It contains a list of links in a nav
element to indicate it's a primary set of navigation
on the page. See for an example of applying
the optional role="banner" to a page-level
header for accessibility purposes. (See “Marking
Navigation” for the role value that’s specific to the
nav element.)

<body>
<header>
<nav»

Barcelona's
Architect</1i>
<li lang="es"><a href="#sagrada-
familia">La Sagrada Familia
</1i>
Park
Guellc/a></1i>

</nav>
</header>
</body>
</html>

) antoni Gandl, Barrelona’s architect - Mnzilla
Flz Edit Yiew Hstory Bookmarks Tools Hi
Anluni Gaudi, Barcelona's archiledt + -

=lnix|

® Darcelona's Architect
® La Saprada Famdlia
® Park Guell

0 The page-level header containing the
navigation.

Creating a Header

If a section of your page has a group of
introductory or navigational content, mark
it up with the header element.

A page can have any number of header
elements, and their meaning can vary
depending on their context. For instance,
a header at or near the top of a page may
represent the header (sometimes called a
masthead) for the whole page @. Often-
times the page header includes the site’s
logo, the main navigation @, other global
links, and even a search box. Undoubtedly,
this is the header element’s most common
use, but don’t mistake it for its only one.

A header would also be appropriate for
marking up a group of introductory or
navigational content deeper within a page.
One example is a section’s table of con-
tents @ (on the next page).

The header element is one of the four
sectioning content elements | mentioned
in “Understanding HTML5’s Document
Outline.” This means that any hi—h6 head-
ing inside a header is considered within
the context of the header—not the page
at large—as far as the document outline is
concerned. So, a header often includes its
section’s heading (an hi—h6 or hgroup), but
this isn’t mandatory. For example, you see
headings in (9 but not in

Basic HTML Structure 61

To create a header:

1. Place the cursor within the element for
which you want to create a header.

2. Type <header>.

3. Type the contents of the header, which
can include a variety of content types
marked up with their respective HTML
elements (most of which you'll learn

G This page has two headers: one serving as the whole page’s header and another as the header for
the Frequently Asked Questions parent article element. Note that the first one doesn’t have any hi-hé
headings, but the second one does. See the last tip in this section for information about the optional role

attribute shown on the first header.

<body>
<header role="banner">

. [site logo, navigation, etc.] ...
</header>

<article>
<header>
<h1>Frequently Asked Questions</hi>
<nav>

What is your return policy?
How do I find a location?

</nav>
</header>

<l-- the header links point to these -->
<article id="answer1">
<h2>What is your return policy</h2>
<p> ... [answer] ... </p>
</article>

<article id="answer2"»
<h2>How do I find a location</h2>
<p> ... [answer] ... </p>
</article>

</article> <!-- end parent article -->

</body>
</html>

62 Chapter 3

about in the rest of the book). For
instance, a header might contain ha-hé6
headings, a logo or series of logos,
navigation, a search box, and more.

4. Type </header>.

Don't use header unnecessarily. If all
you have is an hi-h6 or an hgroup and no
companion content worthy of grouping with it,
there’s no need to wrap it in a header in most
cases.

A header is not interchangeable with a
heading, as in the h1-h6 elements (see “Cre-
ating Headings”). Each has its own semantic
purpose.

You may not nest a footer element or
another header within a header, nor may you
nest a header within a footer or address
element.

A header doesn’t always have to con-
tain a nav element as the examples do (

and (9)), but in most cases, it likely will if the
header contains navigational links. In the
case of (©), nav is appropriate around the list
of Frequently Asked Questions links, since it's
a major navigation group within the page, as
discussed in “Marking Navigation.”

See “Creating Generic Containers” to
learn about how header has replaced one of
the div element's roles from its pre-HTML5
days.

See “Improving Accessibility with ARIA”
to learn how you may use role="banner"
with header.

Basic HTML Structure 63

Marking Navigation

Earlier versions of HTML didn’t have an
element that explicitly represents a section
of major navigation links, but HTML5 does:
the nav element. Links in a nav may point
to content within the page 0, to other
pages or resources, or both. Whatever the
case may be, use nav only for your docu-
ment’s most important groups of links, not
all of them.

If you looked closely at the code in the
previous section, you got a look at the nav
element in action. I've carried that code
sample over to this page, while highlighting
nav (Y. The nav element doesn’t impose
any default formatting on its contents @.

o These links (the a elements) represent an
important set of navigation, so I've nested them
in a nav element. Typically, you’ll mark up a list of
links with the ul element (unordered list) unless
your links are breadcrumb links. In that case,

use an ol (ordered list). See Chapter 15 for more
information about lists. The role attribute is

not required, but can improve accessibility. See
the last tip in this section for information about
applying role="navigation" to nav.

<body>
<header>
<nav role="navigation">

Barcelona's
Architect</1i>
<li lang="es"><a href="#sagrada-
familia">La Sagrada Familia
</1i>
Park
Guellc/a></1i>

</nav>
</header>
</body>
</html>

64 Chapter 3

) antoni Gandl, Barrelona’s architect - Mnzilla Firefos _|0| =|

Fiz Edit Yiew Hstory Bookmarks Tools Help

Anluni Gaudi, Barcehona's archiledt | + -

® Darcelona's Architect
La Saprada Famdlia

& Park Gurll

0 Our navigation looks rather plain by default.
The bullets are not a product of the nav element,
which has no default styling other than starting on
its own line. The bullets display because each link
isin an 1i element (a list item). With CSS, you can
turn off the bullets or show different ones, as well
as lay out the links horizontally, change their color,
make them look like buttons, and more. You'll
begin learning about CSS in Chapter 7.

To designate a group of links
as important navigation:

1. Type <nav>.

2. Type your list of links structured as a
ul (unordered list) unless the order of
the links is significant (like breadcrumb
navigation), in which case you should
structure them as an ol (ordered list).
(See Chapters 6 and 15 to learn about
links and lists, respectively.)

3. Type </nav>.

If you have some experience with HTML
or XHTML, you’re probably accustomed to
structuring your links in a ul or ol element,
as appropriate. In HTMLS5, nav doesn’t replace
that best practice; continue to use those
elements, and simply wrap a nav around
them

Although screen readers on the whole
are still catching up with the new semantics
in HTMLS5, the nav element could help them
identify your page’s important navigation and
allow users to jump to them via the keyboard.
This makes your page more accessible,
improving your visitors’ experience.

The HTML5 spec recommends not wrap-
ping ancillary page footer links like “Terms

of Use” and “Privacy Policy” in a nav, which
makes sense. Sometimes, though, your page
footer reiterates the top-level global naviga-
tion or includes other important links like
“Store Locator” and “Careers.” In most cases, |
recommend putting those types of footer links
in a nav.

HTMLS5 doesn’t allow nesting a nav
within an address element.

See “Improving Accessibility with ARIA”
to learn how to use role="navigation"
with nav

Basic HTML Structure 65

A Deeper Look at nav

As | mentioned earlier, just because you have a group of links in your page doesn’t mean it should
be contained in a nav.

The following sample news page includes four lists of links, only two of which are considered
major enough to warrant being wrapped in a nav. (As you'll see, I've abbreviated portions of the
code.)

cee

<body>

<header>
<!-- site logo could go here -->
<l-- site global navigation -->
<nav>

 ...

</nav>

</header>

<div id="main">
<h1>Arts & Entertainment</h1>
<article>
<hi>Gallery Opening Features the Inspired, Inspiring</hi>

<p>... [story content] ... </p>

<aside>

<h1>0ther Stories</hi>

<!-- not wrapped in nav -->
 ... [story links] ...
</aside>
</article>

</div>

66 Chapter3

A Deeper Look at nav (continued)

<aside id="sidebar">
<nav><!-- secondary navigation -->

Movies</1li>

Music</1i>

</nav>

</aside>

<footer>
<!-- Ancillary links not wrapped in nav. -->
 ...
</footer>
</body>
</html>

The secondary navigation in the aside (see “Specifying an Aside”) allows the user to navigate to
other pages in the Arts & Entertainment directory, so it constitutes a major navigational section of

the page. However, the Other Stories aside with links does not.

So how do you decide when a group of links deserves a nav? Ultimately, it’s a judgment call based
on your content organization. At a minimum, mark up your site’s global navigation (that is, what
allows users to jump to sections of the site) with nav. Often, but not always, that particular nav

appears within a page-level header element (see “Creating a Header”).

Basic HTML Structure 67

Creating an Article

Another of the elements that’s new thanks
to HTML5 is article @). You've seen
some examples of it in play already. Now
let’s learn more about what makes it tick.

Based on its name, you'd rightly guess that
you can use article to contain content
like a newspaper article. However, it isn’t
limited to that. In HTML5, “article” is more
akin to “item.”

Here’s how HTML5 defines it:

The article element represents

a self-contained composition in a
document, page, application, or site
and is, in principle, independently
distributable or reusable, e.g., in
syndication. This could be a forum
post, a magazine or newspaper
article, a blog entry, a user-submitted
comment, an interactive widget or
gadget, or any other independent
item of content.

Other article examples could include

a movie or music review, a case study, a
product description, and more. You might
have been surprised to learn that it also
can be an interactive widget or gadget, but
those too are independent, redistributable
items of content.

o I've abbreviated the article contents and the nav
code from the previous section to keep it simple.
You can see the complete version of the page
code on the book site at www.bruceontheloose
.com/htmicss/examples/. Although this example
includes paragraphs and images only, an article
can contain a variety of content types, such as
video, figures, lists, and more.

<body>
<header>

<nav role="navigation">

... [ul with links] ...

</nav>
</header>
<article>

<h1 id="gaudi">Barcelona's Architect</h1>

<p>Antoni Gaudi's incredible buildings
bring millions of tourists to
Barcelona each year.</p>

<p>Gaudi's non-conformity, already
visible in his teenage years, coupled
with his quiet but firm devotion to
the church, made a unique foundation
for his thoughts and ideas. His
search for simplicity, based on his
careful observations of nature, are
quite apparent in his work, from the
Park Guell
and its incredible sculptures and
mosaics, to the Church of the <a href=
"#sagrada-familia">Sacred Family
and its organic, bulbous towers.</p>

<h2 id="sagrada-familia" lang="es">La
Sagrada Familia</h2>

... [image and paragraphs] ...
<h2 id="park-guell">Park Guell</h2>

... [image and paragraphs] ...
</article>

</body>
</html>

68 Chapter 3

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

I7) Antoni Laudi, Barcelona's architect - Mozilla| =10] x|
Fle Edit Wew Hictory Bookmarks ook He

Anloni G, Bareedina's archil el +

ark Guell

Barcelona's Architect

Antont Ciandi's meredible bauldings bring nullions of tounsts to
Barcclena cach year

Gaudi's non-conformity, alrcady visible m his tecnage years, coupled
with his quiet but firm devotion to the church, made a ungue
foundation for his thoughts and ideas. His search for simpleity, baged
on his careful observations of nature are quite apparent in his work,
Frore the Palk G
Church of the Sacred Family and its crganie, bulhons towers

1 and ity meredible sculplures and meosacs, o the

La Sagrada Familia

The comphvatedly named and cunously unfrshed
masterpiece that is the Txpiatory Temple of the Sacred Family is the =l
most visted budding in Barcelona. 1o it, Gawdi combues s wision of

0 Now the page has header, nav, and article
elements, as well as their contents. The article
headings may be a different size by default
depending on the browser. You can standardize
their look across browsers with CSS (see
Chapter 10).

To create an article:
1. Type <article>.

2. Type the article’s contents, which
could include any number of elements,
such as paragraphs, lists, audio, video,
images, figures, and more.

3. Type </article>.

@D As you learned in “Understanding
HTML5’s Document Outline,” article is one
of the four sectioning content elements along
with header, section, and aside.

You can nest an article inside another
one as long as the inner article is related to
the article on the whole. You can’t nest an

article inside an address element, though.

A page may contain several article
elements (or none at all). For example, a blog’s
homepage typically includes a few of the

most recent postings; each could be its own
article.

It isn’t mandatory that an article have
one or more section elements. It’s perfectly
valid to let the h1-h6 elements within an
article stand on their own, though by defin-
ing sections you’re making the article’s
semantics more explicit. And each section
can have its own hierarchy of heading levels,
as discussed in “Understanding HTML5’s
Document Outline.”

The article and section elements
are easily (and rightfully) confused with one
another, which is why | quoted directly from
HTML5’s definitions; | didn’t want you learning
about them through a filter. | discuss section
and choosing between the two in “Defining a
Section.”

See “Improving Accessibility with ARIA”
to learn how you may use role="main"

with article under a certain circumstance.

It would be appropriate to include it on the
article in ()) because it’s the container for
the page’s main content, but | omitted it to
avoid giving the impression that role="main"
is right for all article elements.

Basic HTML Structure 69

More article Examples

The previous example) is just one way to use article. Let’s take a look at some more
possibilities.

Example 1 (basic article):
<article>
<h1>The Diversity of Papua New Guinea</h1>
<p>Papua New Guinea is home to more than 800 tribes and languages ...</p>

... [rest of story content] ...

<footer> <!-- the article's footer, not the page's -->

<p>Leandra Allen is a freelance journalist who earned her degree in
anthropology from the University of Copenhagen.</p>

<address>

You may reach her at
leandra@therunningwriter.com.

</address>
</footer>

</article>

Note the use of the footer and address elements (see discussions about them in this chapter and
Chapter 4, respectively). Here, address applies only to its parent article (the one shown), not to
the page or any articles nested within that article, such as the reader comments in Example 2.

Example 2 demonstrates nested article elements in the form of user-submitted comments to
the parent article, just like you see in the comments section of blogs or news sites. It also shows
one use for the section element (see “Defining a Section”) and the time element, covered in
Chapter 4.

70 Chapter 3

More article Examples (continued)
Example 2 (nested articles):
<article>
<h1>The Diversity of Papua New Guinea</h1>

... [parent article content] ...

<footer>
... [parent article footer] ...

</footer>

<section>
<h2>Reader Comments</h2>
<article>

<footer>travelgal wrote on <time datetime="2011-11-17"
pubdate>November 17, 2011</time>:</footer>

<p>Great article! I've always been curious about Papua New
Guinea.</p>

</article>
<article>
... [next reader comment] ...
</article>
</section>
</article>

These are just a couple of more common ways to leverage article and its companion elements.

Basic HTML Structure 71

Defining a Section

The article element has a less semanti-
cally specific cousin, section, which is
another of the elements unique to HTML5.

In part, HTML5 defines section as follows:

The section element represents a
generic section of a document or
application. A section, in this context,
is a thematic grouping of content,
typically with a heading @.

Examples of sections would be chap-
ters, the various tabbed pages in a
tabbed dialog box, or the numbered
sections of a thesis. A Web site's
homepage could be split into sec-
tions for an introduction, news items,
and contact information.

The article and section elements are
pretty similar. If you aren’t quite sure how
to differentiate the two, see the sidebar
“How Do you Decide between article
and section?”

To define a section:
1. Type <section>.

2. Type the section’s contents, which
could include any number of elements,
such as paragraphs, lists, audio, video,
images, figures, and more.

3. Type </section>.

o The code is the same as before except
I've wrapped a section around each of the
two sections of the article that follows the
introduction. I've simplified the code again for
brevity.

<body>
<header>
<nav role="navigation">
. [ul with links] ...
</nav>
</header>

<article>
<h1 id="gaudi">Barcelona's Architect</h1>

<p>Antoni Gaudi's incredible buildings
bring millions of tourists to
Barcelona each year.</p>

... [another introductory paragraph] ...

<section>
<h2 id="sagrada-familia" lang="es">La
Sagrada Familia</h2>

<p><img src="img/towers.jpg"
width="75" height="100" alt=
"Sagrada Familia Towers" /> The
complicatedly named and curiously
unfinished masterpiece that is
the Expiatory Temple of the
Sacred Family is the most visited
building in Barcelona. In it, Gaudi
combines his vision of nature and
architecture with his devotion
to his faith. The Sagrada Familia
attracts even the non-religious to
its doors in large part due to its
tragic story and its still
unfinished state, of which the
everpresent scaffolding and cranes
are permanent reminders.</p>
</section>

<section>
<h2 id="park-guell">Park Guell</h2>

... [another image and paragraphs] ...
</section>
</article>
</body>
</html>

72 Chapter 3

) antoni Laudi, Barcelona's architect - Mozilla M
Fle Edit Wew History Bookmarks ook Help

Anloni Gesli, Bareedonas arcbil el [+

ark Guell

el

Barcelona's Architect

Antont Ciandi's meredible bauldings bring nullions of tounsts to
Barcclena cach year

Gaudi's non-conformity, alrcady visible m his tecnage years, coupled
with his quiet but firm devotion to the church, made a ungue
foundation for his thoughts and ideas. His search for simpleity, baged
on his careful observations of nature are quite apparent in his work,
Gomn the Park Guell and ats meredible sculptures and mesacs, o the

Church of the Sacred Family and its crganie, bulhons towers

La Sagrada Familia

The comphvatedly named and cunously unfirshed
masterpiece that 15 the Txpiatory Temple of the Sacred Family is the
most visted budding in Barcelona. oo, Gawdi combues s wision of

0 Now the page has header, nav, article, and
section elements, as well as their contents. The
default rendering is the same as before you added
the section elements.

As you learned in “Understanding
HTML5’s Document Outline,” section is one
of the four sectioning content elements along
with nav, article, and aside.

By default, you may not see a differ-
ence when viewing a page with sections (or
articles, for that matter), but what’s impor-
tant is that you strengthen the semantics of
your document by using them 0 Of course,
you can style section and article elements
however you like with CSS.

Keep in mind that sectionis nota
generic container like div, because section
conveys meaning and div has absolutely no
semantic meaning (see “Creating Generic
Containers”).

There are several examples throughout

this chapter to help you get a sense of how to
use both article and section (in a variety

of ways).

See “Improving Accessibility with ARIA”
to learn how you may use role="main" with
section under a certain circumstance.

How Do You Decide between axticle and section?

| deliberately quoted HTML5'’s definitions of section and article (see “Creating an Article”) to
help you understand the distinction, because it is subtle at times. Think of them this way. Is your
content an independent piece of content or a widget that would be appropriate for syndication? If
yes, use article. (Otherwise, in most cases use section, though see “Creating Generic Contain-
ers” to learn about when to use div instead.) It doesn’t mean you have to syndicate or otherwise
distribute article content, just that the content is fit for it.

If you're still thinking axrticle and section seem pretty similar at times, don’t worry, you’re not
alone. Even seasoned developers apply these two elements differently at times.

As mentioned in Chapter 1, there isn’t always a right choice and wrong choice when it comes to
marking up your content, just most of the time. The other times come down to personal decisions
about which HTML elements you feel best describe your content.

So, do give careful thought when deciding between article and section, but don’t wring your
hands worrying about whether you get them exactly right every time. Sometimes it’s a little subjec-
tive, and in any case, your page will continue to work. Plus, no one’s going to come knocking at

your door in the middle of the night.

Well, I might, but that’s just because it's dark and scary outside.

Basic HTML Structure 73

An Example of section without article

So far you’ve seen examples of section nested in an article (). That’s just one use of the
element.

In the following slightly modified example from the HTML5 spec, you see section used without
article. (You also get an early glimpse of ordered lists in action. Learn more about the ol and
other list elements in Chapter 15.)

<body>
<hi>Graduation Program</hi>

<section>

<h2>Ceremony</h2>

Opening Procession
Speech by Valedictorian
Speech by Class President
Presentation of Diplomas
Closing Speech by Headmaster

</section>

<section>
<h2>Graduates (alphabetical)</h2>

Molly Carpenter
Anastasia Luccio
Ebenezar McCoy</1i>
Karrin Murphy</1i>
Thomas Raith</1i>
Susan Rodriguez

</section>
</body>
</html>

74 Chapter 3

o This aside, featuring information about Specifying an Aside

Barcelona’s architectural wonders, is tangentially

related to the Antoni G.audl content that’s thg Sometimes you have a section of content
focus of the page, but it could also stand on its

own. | could have nested it within the article that is tangentially related to the main
since they are related, but | decided to put it after content on your page but that could stand

thg article in order to tll:eat it visually Iat"er like on its own 0 How would you indicate that
a sidebar (£). The role="complementary" on the
aside is optional, but can improve accessibility. semantically?

See the last tip for more information.

<body>

<header>
<nav role="navigation">
... [ul with links] ...
</nav>
</header>

<article>
<h1 id="gaudi">Barcelona's Architect</h1>
... [introductory paragraphs] ...

<section>
<h2 id="sagrada-familia" lang="es">La Sagrada Familia</h2>
. [image and paragraph] ...
</section>

<section>
<h2 id="park-guell">Park Guell</h2>
... [another image and paragraphs] ...
</section>
</article>

<aside role="complementary">
<h1>Architectural Wonders of Barcelona</hi>

<p>Barcelona is home to many architectural wonders in addition to Gaudi's work. Some of them
include:</p>

<li lang="es">Arc de Triomf</1i>
The cathedral (La Seu)
<li lang="es">Gran Teatre del Liceu
<li lang="es">Pavilion Mies van der Rohe
<li lang="es">Santa Maria del Mar</1i>

<p>Credit: <a href="http://www.barcelona.de/en/barcelona-architecture-buildings.html"
rel="external"><cite>Barcelona.de</cite>.</p>
</aside>

</body>
</html>

Basic HTML Structure 75

Until HTML5, there was no way to do this
explicitly. Now, you have the aside ele-

ment ©@.

It's common to think of an aside as a
sidebar @, but you can place an aside
element in a variety of places in your page,
depending on the context. It may be a box
(conceptually or literally) within the main
content itself, in the same column but not
nested in the main content, or in (or as) a
secondary column like a sidebar. Examples
of aside include a pull quote, a sidebar, a
box of links to related articles on a news
site, advertising, groups of nav elements
(for instance, a blog roll), a Twitter feed,
and a list of related products on a com-
merce site.

') Antonl Gaudi, Baroclona's architect - Mozilla Firefos - =
Fie ER Vew Hlory Bockmars ok Heb
Arkors G, Barcelora’s archteck [+ 7
daors mh_'gp p:\ﬂ:.c‘hm.tn s vaér: story and izz =il unfirished state, of whach the B
everpresent scaffolding and cranes are permanent remunders.

Park Guell

The Park Guell always remnds me of Howard Foark m Ayn
Rand's The Fowmtatnhead. Gandl's project in the Pasrle Guell was to buld a
residennal commmunty whose residents would love where they ved. It was never
finished

Pethaps that 13 for the best, smee now we all get Lo enjoy it. The Pak Guell is
2ot an a kil diy all of Barcel. Itz beaunfil and even

cormnlortable serpentme bench 15 Bled wath foregners and locals ablce every day
of the week Its mosaic Lizards have become synonymous with the city itzelf

Architectural Wonders of Barcelona

Barcelona 1z hame to many architechural wonders i addmen to Gand's wark
Some of them mclude:

® Arc de Trioml

® The cathedral (La Seu)

= Ciran Teatre del Licen

& Pavilion Mies van der Fohe
* Santa Maria del Mar

Creds Barcelona.de. =l

0 The aside appears below the article because
it follows it in the HTML itself Q As you can see,
browsers don’t apply any special formatting to an
aside by default (except starting them on their
own line). However, you have complete control
over its appearance with CSS G

76 Chapter 3

® Laagrata Famaia o Fark el

BARCELONA'S ARCHITECT

Fas

LA SAORADA FAMILIA

0 When you apply CSS to the finished page,
you can make the aside (which begins with
“Architectural Wonders of Barcelona”) appear
alongside the main content instead of below it.
So in this case, you've treated the aside like a
sidebar. (You'll learn how to do a two-column CSS
layout in Chapter 11.)

To specify an aside:
1. Type <aside>.

2. Type the aside’s content, which could
include any number of elements, such
as paragraphs, lists, audio, video,
images, figures, and more.

3. Type </aside>.

Although one way aside is used is to
mark up content in a sidebar G, the aside
element itself doesn’t affect the layout of the
page 0.

If you use one or more asides in or

as a sidebar, place the sidebar content after
your page’s main content in the HTML 0 It’s
better for SEO and accessibility purposes to
place the most important content first. You can
change the order in which they display in the
browser with CSS.

Use the figure element (see Chapter 4),
not aside, to mark up figures that are related
to your content, such as a chart, a graph, or an
inset photo with a caption.

HTMLS5 disallows nesting an aside
inside an address element.

See “Improving Accessibility
with ARIA” to learn how you may use
role="complementary" with aside.

Basic HTML Structure 77

Other aside Examples

As mentioned, aside can appear in the same column as your main content, nested within your
main content, or in a sidebar.

Example 1shows an aside nested within its related content.
Example 1 (nested in main content):
<body>
<article>
<h1>The Diversity of Papua New Guinea</h1>
... [article content] ...
<aside>
<h1>Papua New Guinea Quick Facts</hi1>

The country has 38 of the 43 known birds of paradise

Though quite tropical in some regions, others occasionally
experience snowfall.</1i>

</aside>
... [more article content] ...
</article>
</body>
</html>

That same article might include a pull quote from the article text. That, too, would be in an
aside. Or it could have a “Related Stories” aside containing a list of links to other essays about
the country or surrounding region (Indonesia, Australia, and so on). Alternatively, that aside could
be in a different page column instead of nested in the article.

You've already seen one example of an aside in a sidebar (&) and (9)). Now, let’s consider an
example of a design portfolio or set of case studies, in which each HTML page focuses on a single
project and you provide links (nested in a nav) to the other project pages in an adjacent column (as
controlled by CSS, not simply by virtue of arranging the code as shown in Example 2).

78 Chapter 3

Other aside Examples (continued)
Example 2 (aside not nested in main content and containing a nav):
<body>
<!-- main content on the page -->
<article>
<h1>... [name of project] ...</h1>
<figure>... [project photo] ...</figure>
<p>... [project write-up] ...</p>

</article>

<l-- this aside is not nested in the article -->
<aside>
<h1>0ther Projects</h1>
<nav>

Habitat for Humanity
brochure</1i>

Royal Philharmonic Orchestra
site</1i>

</nav>
</aside>
</body>
</html>

It would be perfectly fine to nest this particular aside in the project article too, since they are
related.

Basic HTML Structure 79

Creating a Footer

When you think of a footer, you probably
think of a page footer. HTML5’s footer
element is appropriate for that, but like
header, you can also use it elsewhere.

The footer element represents a

footer for the nearest article, aside,
blockquote, body, details, fieldset,
figure, nav, section, or td element in
which it is nested. It’s the footer for the
whole page only when its nearest ances-
tor is the body (@) and @). And if a footer
wraps all the content in its section (an
article, for example), it represents the
likes of an appendix, index, long colophon,
or long license agreement, depending on
its content.

o This footer represents the footer for the
whole page, since its nearest ancestor is the body
element. Our page now has header, nav, article,
section, aside, and footer elements. Not every
page requires them all, but they do represent the
primary page constructs available in HTML.

<body>
<header>
<nav role="navigation">
... [ul with links] ...
</nav>
</header>

<article>
<h1 id="gaudi">Barcelona's Architect</h1>
... [introductory paragraphs] ...

<section>
<h2 id="sagrada-familia" lang="es">La
Sagrada Familia</h2>
. [image and paragraph] ...
</section>

<section>
<h2 id="park-guell">Park Guell</h2>
... [another image and paragraphs] ...
</section>
</article>

<aside role="complementary">
<h1>Architectural Wonders of Barcelona
</h1>
... [rest of aside] ...
</aside>

<footer>
<p><small>© Copyright 2011</small>
</p>
</footer>

</body>
</html>

80 Chapter 3

=lax]
e [dr yew Hgory eokmads ook (e
Antors Ghud, Barcelona's anchitect Lk
zet on & hdl overlooking pracucally all of Barcelona Tts beautfil and even -l

comfortable serpentne bench is Slled with foresgners and locals alke every day
of the weel. Its mosac hzards have become synonymous with the cify self

Architectural Wonders of Barcelona

Barcelona 15 home to many architechural wonders i addion to Gawdd's werk
Some of them mclude.

& Arc de Tnomf

» The cathedral (La Seu)

® Gran Teawre del Licen

& Favibon Mies van der Fohe
* Santa Mara del Mar

Credit, Sar

© Copyright 1011 -

0 The footer element itself doesn’t impose

any formatting on the text by default. Here,

the copyright notice is smaller than normal

text because it's nested in a small element to
represent legal print semantically (see Chapter 4).
Like everything else, you can change the font size
with CSS.

To create a footer:

1. Place the cursor within the element for
which you want to create a footer.

2. Type <footer>.
3. Type the contents of the footer.
4. Type </footer>.

A footer typically includes informa-
tion about its section, such as links to related
documents, copyright information, its author,
and similar items. See Examples 1and 2 in the
“Other footer Examples” sidebar.

A footer doesn’t need to be at the end
of its containing element, though usually it is.

It’s invalid to nest a header or another
footer within a footer. Also, you can’t
nest a footer within a header or address
element.

See “Creating Generic Containers” to
learn how footer has replaced one of the div
element's roles from its pre-HTML5 days.

@D See “Improving Accessibility

with ARIA” to learn how you may use
role="contentinfo" with footerina
certain circumstance. It would be appropriate
to include it on the footer in because it
represents the footer for the whole page, but
| omitted it to avoid giving the impression that
role="contentinfo" is right for all footer
elements. See “Other footer Examples” for
an example that both shows the distinction
and uses the role properly.

Basic HTML Structure 81

Other footer Examples
You saw one small example of a footer for the whole page (&) and (:}). Here is another page
footer, but with more content.

Example 1 (as page footer):
<body>

... [page header and content] ...

<!-- this is a page footer because body is its nearest ancestor -->
<footer role="contentinfo">

<p><small>© Copyright 2011 The Corporation, Inc.</small></p>

Terms of Use</1li>
Privacy Policy</1i>

</footer>
</body>
</html>

The next example demonstrates a footer in the context of a page section (in this case an
article), and a second footer for the whole page. (See “More article Examples” for an expla-
nation of the address element’s scope here.)

Example 2 (as a footer for a page section and the whole page):
<body>
<article>

<h1>... [article header] ...</h1>

<p>... [article content] ...</p>

82 Chapter 3

Other footex Examples (continued)
<!-- the article footer -->
<footer>

<p>Leandra Allen is a freelance journalist who earned her degree
in anthropology from the University of Copenhagen.</p>

<address>

You may reach her at <a href="mailto: leandra@therunningwriter.
com">leandra@therunningwriter.com.

</address>
</footer>

</article>

<!-- the page footer -->
<footer id="footer-page" role="contentinfo">
... [copyright, terms of use, privacy policy] ...
</footer>
</body>

</html>

The id="footer-page" (you can specify any valid id) on the page footer is optional and is just to
differentiate it from the other footer for styling control. Note that only the page footer is given
the optional role="contentinfo". See “Improving Accessibility with ARIA” to learn more about
this role.

Basic HTML Structure 83

Creating Generic
Containers

Sometimes you need to wrap a container
around a segment of content because you
want to apply some styling with CSS or
maybe an effect with JavaScript. Your page
just wouldn’t be the same without it 0.
But, when you assess the content, you
determine that using the likes of article,
section, aside, nav, or other elements
wouldn’t be appropriate semantically.
What you really need is a generic con-
tainer, one without any semantic meaning
at all. That container is the div element
(think of a “division”) @. With a div in
place, you can apply the desired style @
or JavaScript effect to it. Be sure to read
the sidebar to learn more about when to
use div in your pages.

Architectursl Wendars
of Baresiena

La Saorapa Fauiuia

PARK GUELL

o | achieved this design without any div
elements in the page. But by adding a div around
all the page’s content (), | now have a generic
container to which | can apply some more styles
(see the results in (9)).

0 Now a div surrounds all the content. The
page’s semantics are unchanged, but now | have
a generic container | can hook some styles onto
with CSS

<body>

<div>
<header>
<nav role="navigation">
... [ul with links] ...
</nav>
</header>

<article>
<h1 id="gaudi">Barcelona's Architect
</h1>
... [introductory paragraphs] ...

<section>
... [heading, image and
paragraph] ...
</section>

<section>
... [heading, another image, and
paragraphs] ...
</section>
</article>

<aside role="complementary">
<h1>Architectural Wonders of
Barcelona</h1>
... [rest of aside] ...
</aside>

<footer>
... [copyright] ...
</footer>
</div>

</body>
</html>

84 Chapter 3

BARCELONA'S ARCHITECT

L .

LA SAORADA FAMILIA

o A div element doesn’t have any of its own
styling by default except that it starts on a new

line 6 However, you can apply styles to div to
implement your designs. Here, | added the light
blue background and a box shadow to the div.
That allowed me to change the body element’s
background to purple so the content pops. | also
added a thin border to the aside. You can see how
| achieved this in the page’s HTML and CSS (www.
bruceontheloose.com/htmlicss/examples/).

H-

DBarcelona's Architect

L Sagrada Familia

Park Cuell

0 The same page with no CSS applied to the
div, the headings, the paragraphs, or any other
element. As you can see, the div doesn’t make
anything look fancy on its own.

To create a generic container:
1. Type <div>.

2. Create the contents of the container,
which could include any number of
elements.

3. Atthe end of the container, type </div>.

Like header, footer, article,
section, aside, nav, h1-h6, p, and many
others, div automatically displays on a new
line by default.

div is also helpful when implementing
certain interactions or effects with JavaScript.
For instance, displaying a photo or dialog box
in a semi-transparent overlay that covers the
page (the overlay is typically a div).

For all of my stressing the point that
HTML describes the meaning of your con-
tent, div isn’t the only element that has no
semantic value. The span element is div’s
counterpart. Whereas div is a semantic-less
container for blocks of content, span (written
as content goes here) is one
for phrases, like within a p element for para-
graphs. See more about span in Chapter 4.

See “Improving Accessibility with ARIA”
to learn how you may use landmark roles
with div.

Basic HTML Structure 85

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

Some History about div and When to Use It in HTML5

Of the structural elements featured in this chapter, div is the only one besides h1—h6 that pre-
dates HTML5. Until HTML5, div was the de facto choice for surrounding chunks of content such as
a page’s header, footer, main content, insets, and sidebars so you could style them with CSS. But
div had no semantic meaning then, and it still doesn’t today.

That’s why HTML5 introduced header, footer, article, section, aside, and nav. These types
of building blocks were so prevalent on Web pages that they deserved their own elements with
meaning. div doesn’t go away in HTMLS5, you’ll just have fewer occasions to use it than in the past.

Let’s look at a couple of common instances in which div is the right choice.
You’ve seen one already: to wrap a whole page with a container for styling purposes () and (©).

How did | get the two-column layout with div? | applied some CSS to the article element to
make it display as column one and to the aside element to make it display as column two. (See
Chapter 7 to start learning CSS, and see Chapter 11 for layouts with CSS.)

Much (if not most) of the time, however, each of your columns has more than one section of con-
tent. For instance, maybe you want another article (or section, or aside, and so on) in the main
content area below the first article. And maybe you want an additional aside in the second
column, say, with a list of links to other sites about Gaudi. Or perhaps you'd like yet another type of
element in that column.

You'd need to group together the content you want to represent each column in a div @ and
then style that div accordingly. (If you were thinking section would be an option instead, it isn’t
intended as a generic container for styling.) I've provided a diagram @ to help you visualize the
relationship between the code (3 and a potential CSS layout. Keep in mind that it’s just one layout
possibility for this HTML; CSS is quite powerful.

So, it’s very common to have a div around each group of content that you want to style as a
column (of course, you can do more than two). In terms of what goes in them, well that can vary
wildly, based on what content you want in your pages. Don’t forget that, as your primary semantic
containers for sections of content, article, section, aside, and nav can go nearly anywhere. As
can header and footer, as you learned in this chapter. Don’t read too much into the fact that the
example (€2 and () shows only axrticles in the main content area and asides in the sidebar.

To be sure, though, div should be your last resort as a container because it has no semantic value.
Most of the time it’ll be right to use the likes of header, footer, article, section, aside, and
possibly nav instead. However, don’t use one of those just to avoid div if it’s not semantically
appropriate to do so. div has its place, you just want to limit its use.

Having said that, there is a valid situation in which it is fine to use div for all (or most, it’s up to you)
containers in a page instead of the new HTML 5 elements. See “Styling HTML5 Elements in Older
Browsers” in Chapter 11 for more information.

86 Chapter3

G This page has the div that contains the

whole page, plus two new ones. One div with
id="content" groups the main content so it

can be styled as column one. Another div with
id="sidebar" surrounds the content you want to
display as column two. Then you can use the id in
your CSS to target each specific div for styling.

“header

Fage header

< Maader

“div id="content

in page contert jarscie 1)

“div id=nidebar =
<anbes

bust rangeeaial
Infarmation
<amide>

cmeddees
Mora ralatec.
but tangential

e i
<body> s
<!-- Start page container --> i
<div id="container"> <tootar>
<header> o
</header> 0 This diagram illustrates how the code in o

could map to a CSS layout conceptually. It's a

<!-- Column One when CSS applied --> very common arrangement, but just one of many

<div id="content"s> possibilities CSS affords you with the same HTML.
<article> Be sure to see the next section, “Improving

Accessibility with ARIA,” to learn how to enhance

</articles the semantics and accessibility of your pages
even more.

<article>

</article>

... [more sections as desired] ...
</div>
<!-- end column one -->
<!-- Column Two when CSS applied -->
<div id="sidebar">

<aside>

</aside>

<aside>

</aside>

... [more sections as desired] ...

</div>
<!-- end column two -->
<footer>
</footer>
</div>
<!-- end page container -->
</body>
</html>

Basic HTML Structure 87

Improving
Accessibility with ARIA

As you learned in the section “Why
Semantics Matter” in Chapter 1, accessibil-
ity improves simply by marking up your
content with the HTML that best describes
it. So if you’re already doing that, you're
doing great. In this section, I'll tell you how
adding a few simple attributes to your
HTML can help your visitors even more.

WAI-ARIA (Web Accessibility Initiative’s
Accessible Rich Internet Applications),

or ARIA for short, is a specification that
declares itself “a bridging technology.” That
is, it fills semantic gaps with attributes until
languages like HTML provide their own
equivalent semantics.

For instance, what HTML markup would
you use to let a screen reader know how to
jump to (or past) the main content of your
page? Or to a search box? As you’ll learn,
there is some overlap between ARIA and
HTML5 (which has also tried to fill some of
the gaps), but not even HTML5 has solu-
tions for those two. ARIA's [andmark roles
do; they identify a set of page regions
partly for this purpose: application,
banner, complementary, contentinfo,
form, main, navigation, and search.

Where there is overlap between landmark
roles and HTMLS5 elements, screen reader
support currently is further along for ARIA.
So you can continue to create HTML as
you always would, and add ARIA roles to
enhance the accessibility of your pages.

In @, I've added ARIA landmark roles and
a nav element to the example from
“Creating Generic Containers.” Although

| placed a complementary role on

each aside element, it would be just

o The example from “Creating Generic Containers”
with the addition of a nav element and five different
landmark roles

<body>

<!-- Start page container -->
<div id="container">
<header role="banner">

<nav role="navigation">
... [ul with links] ...
</nav>
</header>
<!-- Column One when CSS applied -->
<div id="content" role="main">
<article>
</article>
<article>
</article>
... [more sections as desired] ...
</div>
<!-- end column one -->
<!-- Column Two when CSS applied -->
<div id="sidebar">
<aside role="complementary">
</aside>
<aside role="complementary">
</aside>
... [more sections as desired] ...
</div>
<!-- end column two -->
<footer role="contentinfo">
</footer>
</div>

<!-- end page container -->

</body>
</html>

88 Chapter 3

ALy id=“content” rola-main”

A1V Ld="sidobars.

<antbale aniide
Main page sontent arcla 1) tale=" emplementary”s

Jarnieler elatea,

Ean tangantisl

intormation

antde
art ke Lo ompl mertary
Btere related, Bt
Juraiade: Hagertial
sarmation

e

ddds

Conler pule=Tvanlenlinfo™
FPage Footer
Frootar

0 This is the layout diagram from “Creating
Generic Containers,” but now it includes the
ARIA roles. As noted, the sidebar div could have
role="complementary" instead of the aside
elements.

as valid to code <div id="sidebar"
role="complementary"s, marking the
entire sidebar instead. Before doing so in
your pages, be sure all of your div content
qualifies as complementary content.

Below are some of the landmark role defi-
nitions found in the ARIA spec, followed
by my recommended usage. They are
demonstrated in €Y and in a diagram @
similar to the one from “Creating Generic
Containers.”

m role="banner"

A region that contains mostly site-
oriented content, rather than page-
specific content.

Site-oriented content typically includes
things such as the logo or identity of the
site sponsor, and a site-specific search
tool. A banner usually appears at the
top of the page and typically spans the
full width.

Usage: Add it to your page-level mast-
head (typically a header element), and
use it only once on each page.

m role="navigation"

A collection of navigational elements
(usually links) for navigating the docu-
ment or related documents.

Usage: This mirrors HTML5’s nav ele-
ment, so add it to each nav element, or
if one isn’t present, add it to the con-
tainer around your links. You can use
this role more than once on each page.

m role="main"
The main content of a document.

Usage: Add it to the container of your
main section of content. Often this will
be a div element, but it could be an
article or section, too. Exceptin rare
circumstances, your page should have
only one area marked with main.

Basic HTML Structure 89

= role="complementary”

A supporting section of the document,
designed to be complementary to the
main content ... but that remains mean-
ingful when separated from the main
content.

The complementary role indicates that
the contained content is relevant to the
main content.

Usage: This mirrors HTML5’s aside
element, so add it to an aside or div
that contains all complementary con-
tent. You can include more than one
complementary role in each page.

m role="contentinfo"

A large perceivable region that contains
information about the parent document.

Examples of information included in this
region of the page are copyrights and
links to privacy statements.

Usage: Add it once on a page to your
page-level footer (typically a footer
element).

In summary, it’s generally a good idea to
add ARIA landmark roles to your HTML.
I've included them in some other examples
throughout the book, as well as on the
book site. To be clear, your pages will
work without them, but including them
can improve the experience for some
users. You may find the screen reader test
results listed in the tips helpful in decid-
ing whether to use them yourself (sup-
port is solid outside of the screen reader
Window-Eyes 7.5).

90 Chapter 3

The form role is redundant semanti-
cally with the form element, search marks
a search form (BBC, Yahoo!, and Google use
this as well as some other landmark roles

in some cases), and application is for
advanced use.

Landmark roles are just one of many
features of the ARIA spec (www.w3.org/TR/
wai-aria/). You may also be interested in this
implementation guide: www.w3.org/WAI/PF/
aria-practices/.

Accessibility advocates Steve Faulkner
and Jason Kiss posted separate tests of
screen reader landmark role support at www
.html5accessibility.com/tests/landmarks.html
and www.accessibleculture.org/research/
htmi5-aria-2011/, respectively. See Faulkner’s
related discussions at www.paciellogroup
.com/blog/2011/11/latest-aria-landmark-
support-data/ and at www.paciellogroup.com/
blog/2011/07/htmi5-accessibility-chops-aria-
landmark-support/.

NVDA (Windows, free download at www.
nvda-project.org/), VoiceOver (free as part of
Mac OSX and iOS 4+), and JAWS (Windows,
free trial available at www.freedomscientific
.com/) are among the most advanced screen
readers available. | can’t recommend strongly
enough that you try at least one of these to
better appreciate how your semantic HTML
choices influence the screen reader user expe-
rience. Better yet, test your pages in a screen
reader as part of your normal development
process.

You can use ARIA role attributes in
your CSS selectors. In fact, by using the
proper landmark roles, you could omit the
id="content" and id="sidebar" attributes
from code sample (.). See Chapter 11 for
details.

Basic HTML Structure 91

www.w3.org/TR/wai-aria/
www.w3.org/TR/wai-aria/
www.w3.org/WAI/PF/aria-practices/
www.w3.org/WAI/PF/aria-practices/
www.html5accessibility.com/tests/landmarks.html
www.html5accessibility.com/tests/landmarks.html
www.accessibleculture.org/research/html5-aria-2011/
www.accessibleculture.org/research/html5-aria-2011/
www.paciellogroup.com/blog/2011/07/html5-accessibility-chops-aria-landmark-support/
www.paciellogroup.com/blog/2011/07/html5-accessibility-chops-aria-landmark-support/
www.paciellogroup.com/blog/2011/07/html5-accessibility-chops-aria-landmark-support/
www.nvda-project.org/
www.nvda-project.org/
www.freedomscientific.com/
www.freedomscientific.com/
www.paciellogroupcom/blog/2011/11/latest-aria-landmark-support-data/
www.paciellogroupcom/blog/2011/11/latest-aria-landmark-support-data/
www.paciellogroupcom/blog/2011/11/latest-aria-landmark-support-data/

Naming Elements
with a Class or ID

Although it isn’t required, you can give
your HTML elements a unique identifier,
assign them a particular class (or classes),
or both. After doing so, you can apply
styles to all elements with a given id or
class name. That’s certainly their most

popular use, but not their only one (see the

tips in this section).

To name an element
with a unique id:

Within the start tag of the element, type
id="name", where name uniquely identi-
fies the element @). name can be almost
anything, as long as it doesn't start with a
number or contain any spaces.

To assign an element a class:

Within the start tag of the element,
type class="name", where name is the
identifying name of the class . If you
want to assign more than one class,
separate each one with a space, as in
class="name anothername". (You may
assign more than two class names.)

Each id in an HTML document must be
unique. In other words, no two elements in
the same page can be named with the same
id, and each element may have only one id.
The same id can appear on multiple pages
and doesn’t have to be assigned to the same
element each time, though it is customary to
do so.

Conversely, a particular class name can
be assigned to any number of elements in a
page, and an element may have more than
one class.

continues on page 94

The class Attribute and
Microformats

There’s a common misperception that
the class attribute was created solely
for applying CSS to groups of elements.
That’s not the case. It was also designed
to enrich HTML's semantics without
adding more elements to the markup
language.

Microformats do just that. They use
agreed-upon class names to identify

a piece of HTML as, say, an event or
calendar entry (the hCalendaxr microfor-
mat); to identify people, organizations,
and companies (hCaxd); or to describe
the relationship between people (XFN).
Those are just a few of the many micro-
formats defined today, and more are
always in the works.

Applications, search bots, and other
software can read and make use of the
microformats in your HTML. For example,
Operator, a Firefox add-on, exposes the
microformats in any given page.

You can learn more about implementing
microformats at http:/microformats.org.

92 Chapter 3

http://microformats.org

o Add a unique id attribute to an element in order to identify it for later formatting, links, or JavaScript
behavior. Add a class attribute to one or more elements to be able to format them all in one fell swoop.

For example, the architect and project classes could be applied to content about other architects for
consistent formatting. The links in the nav point to the ids on the h1 and h2s (see Chapter 6 for more infor-
mation about links). The other ids are for formatting. See “Creating Generic Containers” for more information
about ids, as well as another example that uses them. The id and class attributes don’t affect an element’s
appearance unless CSS references them.

<body>

<div id="container">
<header>
<nav role="navigation">
<ul id="toc">
Barcelona's Architect</1i>
La Sagrada Familia
Park Guell</a»></1i>

</nav>
</header>

<article class="architect" role="main">
<h1 id="gaudi">Barcelona's Architect</h1>

<p>Antoni Gaudi's incredible buildings bring millions of tourists to Barcelona each year.</p>
<section class="project">

<h2 id="sagrada-familia" lang="es">La Sagrada Familia</h2>
</section>

<section class="project">
<h2 id="park-guell">Park Guell</h2>

</section>
</article>
</div>

</body>
</html>

Basic HTML Structure 93

The class and id attributes may be
added to any HTML element. An element may
have both an id and any number of classes.

For information about applying styles

to an element with a particular id or class,
consult “Selecting Elements by Class or ID” in
Chapter 9.

Choose meaningful (that is, semantic)
names for your ids and classes, regardless
of how you intend to use them. For instance, if
you use a class for styling, avoid hames that
describe the presentation, like class="red"
—that’s a cardinal sin (get it, red, cardinal?).

In all seriousness, class="red" is a poor
choice because you might decide next week
to change your site’s color scheme to blue.
Changing the color assigned to a class in
CSS is incredibly simple, but then your HTML
would have a class called red that really
renders in a different color. Changing all the
class names in your HTML usually isn’t trivial.

When choosing between applying a
class or an id to an element for styling pur-
poses, generally it’s preferable to use a class
because you can reuse its associated styles on
other elements with the same class. How-
ever, certainly there will be times you want to
direct your styles to one element (and possibly
any of its descendants) via its id.

The id attribute automatically turns the
element into a named anchor, to which you
can direct a link. For more details, see “Creat-
ing Anchors” in Chapter 6.

You can use the class attribute to imple-
ment microformats (see the sidebar for more
details).

You can use JavaScript to access both
the id and class attributes to apply behavior
to particular elements.

94 Chapter 3

o You can add titles to any elements you wish,
though it’s most common to use them on links.

<body>
<header role="banner">
<nav role="navigation">
<ul id="toc" title="Table of
Contents">
<a href="#gaudi" title=
"Learn about Antoni
Gaudi">Barcelona's
Architect</1i>
<a href="#sagrada-familia"
lang="es">La Sagrada Familia

</ax</1i>
Park
Guell</ay»</1i>

</nav>
</header>
</body>
</html>
&) Antoni Gaudi, Barcelona's arel 101 x|

File Edit “iew History Bookmarks Tools Help

|| Antoni Gaudi, Barcelona's architect | A | 27

® Parcelona's Architect

® La Zagrada Famiha
® DParlc Guell

Barcelona's

0 When your visitors point at the labeled
element, the title will appear. If you were pointing
at the Barcelona’s Architect link, you’d see “Learn
about Antoni Gaudi,” since it has its own title
attribute.

Adding the Title
Attribute to Elements

You can use the title attribute—not to be
confused with the title element—to add a
tool tip label to practically any part of your
Web site (@) and @). They aren’t just for
tool tips, though. Screen readers may read
title text to users, improving accessibility.

To add a title to elements
in a webpage:

In the HTML element for the item you want
to label with a title, add title="1abel",
where label is the brief descriptive text
that should appear in the tool tip when a
visitor points at the element or that will be
read aloud by a screen reader.

Old versions of Internet Explorer (IE7 and
earlier) also make tool tips out of the alt attri-
bute used in img elements (see Chapter 5).
However, if both the title and alt attributes
are present in an img element, the tool tip is
set to the contents of the title attribute, not
the alt attribute.

Basic HTML Structure 95

Adding Comments

You can add comments to your HTML and more €). These comments only
documents to note where sections begin appear when the document is opened

or end, to comment to yourself (or future with a text editor or via a browser’s View
editors) the purpose of a particular piece of Source option. They are invisible to visitors
code, to prevent content from displaying, in the browser otherwise @.

0 This sample includes four comments. Two combine to mark the beginning and end of the article. Another
“comments out” the first paragraph so it won’t be displayed in the page (if you want the paragraph to be
removed long-term, it would be best to delete it from the HTML). The last comment is a reminder to add more
content before putting the page on the live site. Just be sure to remove any temporary comments like “to
dos” before making your page live, in case visitors view your code. “Creating Generic Containers” has more
sample comments.

<body>

¢!-- ==== START ARTICLE ==== -->
<article class="architect">
<h1 id="gaudi">Barcelona's Architect</h1>

<!-- This paragraph doesn't display because it's commented out.
<p>Antoni Gaudi's incredible buildings bring millions of tourists to Barcelona each
year.</p>
-->

<p>Gaudi's non-conformity, already visible in his teenage years, coupled with his quiet
but firm devotion to the church, made a unique foundation for his thoughts and ideas. His
search for simplicity ...</p>

<section class="project">
<h2 id="sagrada-familia" lang="es">La Sagrada Familia</h2>

</section>
<section class="project">
<h2 id="park-guell">Park Guell</h2>
</section>
</article>

<!-- end article -->

<!--
TO DO: Add another article here about other famous buildings before making page live.
-->

</body>
</html>

96 Chapter 3

) antoni Gandi, Barrelnna’s architect - Mn 0| x|

Bic Edt Viow Hgtory Bookmarks Took Help

Antuni Gaudi, Barvehng's ard el | ksl -

lona's Arclutect
orada Familia
Fark Guell

Barcelona's Architect

Ganedi's non-conformmly, already wiable mbos teenage years, coupled
with his quiet but firm devetion to the church, made a unique
Tonmedation for bns thoughls and deas Fis search o snphity, based
on his careful observations of nature are quite apparent i his worl,
from the Park Guell and its meredible soulptures and moses, Lo the

Church of the Sacred Family and its orgamc, bulbous towers,

La Sagrada Familia |

0 Comments are invisible (though they readily
appear when the source code is displayed).
Similarly, if you wrap a comment around some of
your content, it won’t display Y. Here, the first
paragraph in the code doesn’t show.

To add a comment to
your HTML page:

1. In your HTML document, where you
wish to insert a comment, type <!--.

2. Type the comments.

3. Type --> to complete the commented
text.

A good use for comments is to remind
yourself (or future editors) to include, remove,
or update certain sections

Another use for comments is to note a
revision number.

It's common to comment the beginning
and end of major sections of code to make it
easier for you or fellow coders to modify later
(pages can get long). | like to use a different,
more prominent format for a starting comment
than for one signifying the end of a block so
my eye can easily distinguish between the two
points as | scan the code

You should view your commented page
with a browser before publishing. This will
help you avoid displaying your (possibly)
private comments to the public because you
accidentally formatted a comment wrong.

Beware, however, of comments that
are too private. While invisible when visiting
your page normally in the browser, they can
be seen via a browser’s View Source feature
or if the user saves the page as HTML code
(source).

Comments may not be nested within
other comments.

The syntax shown is for HTML comments
only. CSS and JavaScript have a different
commenting syntax. CSS and JavaScript both
use /* Comment goes here */ for a comment
covering one or more lines, while JavaScript
also has // Comment goes here for single-line
comments.

Basic HTML Structure 97

This page intentionally left blank

Text

Unless a site is heavy on videos or photo
galleries, most content on Web pages is
text. This chapter explains which HTML
semantics are appropriate for different
types of text, especially (but not solely) for
text within a sentence or phrase.

For example, the em element is specifically
designed for indicating emphasized text,
and the cite element’s purpose is to cite
works of art, movies, books, and more.

Browsers typically style many text ele-
ments differently than normal text. For
instance, both the em and cite elements
are italicized. Another element, code,
which is specifically designed for format-
ting lines of code from a script or program,
displays in a monospace font by default.

How content will look is irrelevant when
deciding how to mark it up. So, you
shouldn’t use em or cite just because you
want to italicize text. That’s the job of CSS.

Instead, focus on choosing HTML elements
that describe the content. If by default a
browser styles it as you would yourself with
CSS, that’s just a bonus. If not, just override
the default formatting with your own CSS.

In This Chapter

Starting a New Paragraph
Adding Author Contact Information
Creating a Figure

Specifying Time

Marking Important and Emphasized Text

Indicating a Citation or Reference
Quoting Text

Highlighting Text

Explaining Abbreviations
Defining a Term

Creating Superscripts and Subscripts
Noting Edits and Inaccurate Text
Marking Up Code

Using Preformatted Text
Specifying Fine Print

Creating a Line Break

Creating Spans

Other Elements

100
102
104
106
10
12
13
116
18
120
121
124
128
130
132
133
134
136

Starting a New
Paragraph

HTML does not recognize the returns or

other extra white space that you enter in
your text editor. To start a new paragraph
in your Web page, you use the p element

(@ and O).

To begin a new paragraph:
1. Type <p>.

2. Type the contents of the new
paragraph.

3. Type </p> to end the paragraph.

o Not surprisingly, p is one of the most frequently
used HTML elements.

<body>

<article>
<h1>Antoni Gaudi</h1>
<p>Many tourists are drawn to
Barcelona to see Antoni Gaudi's
incredible architecture.</p>

<p>Barcelona celebrated the 150th
anniversary of Gaudi's birth in
2002.</p>

<h2>La Casa Mila</h2>

<p>Gaudi's work was essentially useful.
La Casa Mila is
an apartment building and real people
live there.</p>

<h2>La Sagrada Familia</h2>
<p>The complicatedly named and curiously
unfinished Expiatory Temple of the
Sacred Family is the most visited
building in Barcelona.</p>
</article>

</body>
</html>

100 Chapter 4

¥)) Antoni Gaudi - Mozilla Firefox T =10l =|

Eile EdiL Wew Helory Bookmarks Took Help
|] Awuni Gaun I+| =

Antoni Gaudi

Many tourists are drawn to Darcelona to see Antorn Gaudl's
miredible archatectoe

Barcelona celcbrated the 150th anmversary of Gaudi's barth in 2002,
La Casa Mila

Gaudi's work was ecsentially usefil. La Casa Mila i an apartment
building and real people live there.

La Sugrada Familia

The compheatedly named and conoosly umfimshed Expratory Temple

of the Sacred Family is the maost visited building in Barcelona.

0 Here you see the typical default rendering of
paragraphs. As with all content elements, you have
full control over the formatting with CSS.

You can use styles to format paragraphs
with a particular font, size, or color (and more).
For details, consult Chapter 10.

To control the amount of space between
lines, consult “Setting the Line Height” in
Chapter 10. To control the amount of space
after a paragraph, consult “Setting the Mar-
gins around an Element” or “Adding Padding
around an Element,” both of which are in
Chapter 11.

You can justify paragraph text or align
it to the left, right, or center with CSS (see
“Aligning Text” in Chapter 10).

Text 101

Adding Author
Contact Information

You might think the address element is

for marking up a postal address, but it isn’t
(except for one circumstance; see the tips).
In fact, there isn’t an HTML element explic-
itly designed for that purpose.

Instead, address defines the contact infor-
mation for the author, people, or organiza-
tion relevant to an HTML page (usually
appearing at the end of the page, if at all)
or part of a page, such as within a report or
a news article (@ and ©).

To provide the author’s
contact information:

1. If you want to provide author contact
information for an article, place the
cursor within that article. Alternatively,
place the cursor within the body (or,
more commonly, the page-level footer)
if you want to provide author contact
information for the page at large.

2. Type <address>.

3. Type the author’s email address, a link
to a page with contact information, and
so on.

4. Type </address>.

o This page has two address elements: one for
the article’s author and the other in a page-level
footer for the people who maintain the whole
page. Note that the address for the article
contains contact information only. Although the
background information about Tracey Wong is also
in the article’s footer, it's outside the address
element.

<body>

<article>
<h1>Museum Opens on the Waterfront</h1>
<p>The new art museum not only introduces
a range of contemporary works to the
city, it's part of larger development
effort on the waterfront.</p>
... [rest of story content] ...

<l-- the article's footer with address
information for the article -->
<footer>
<p>Tracey Wong has written for <cite>
The Paper of Papers</cite> since
receiving her MFA in art history
three years ago.</p>
<address>
Email her at <a href="mailto:
traceyw@thepaperofpapers.com”>
traceyw@thepaperofpapers.com
.
</address>
</footer>
</article>

<!-- the page's footer with address
information for the whole page -->
<footer>
<p><small>8copy; 2011 The Paper of
Papers, Inc.</small></p>

<address>
Have a question or comment about the
site?
Contact our Web team
</address>
</footer>

</body>
</html>

102 Chapter 4

) author Lontact Info - Mozilla Hrefow] -|1oj x|

Fle Edit Wew Hstory Bookmarks Jools Help

L Author Contact Tufo | =) =

Museum Opens on the Waterfront

The new art museum nol only miroduces a range of contemporary works
to the city, it's part of larger dewelopment affort on the waterfront

|rest of story content]

Iracey Wong has wntten tor The Haper of Papers smce receming her
IMEA m At History threc years age.

Email her at traceyw(@lhepaperofpapeora.com.

2 211 The Faper of Fopers, ne.

Have a guestion or comment about the site? Comtact our Wb team,

0 The address element renders in italics by
default.

Most of the time, contact information
takes the form of the author's email address
or a link to a page with more contact informa-
tion. The contact information could very well
be the author's postal address, in which case
marking it up with address would be valid.
But if you're creating the Contact Us page for
your business and want to include your office
locations, it would be incorrect to code those
with address.

address pertains to the nearest
article element ancestor, or to the page’s
body if address isn’t nested within an
article. It’s customary to place address in a
footer element when noting author contact
information for the page at large

An address in an article provides
contact information for the author of that
article (), not for any articles nested
within that article, such as user comments.

address may contain author contact
information only, not anything else such as the
document or article’s last modified date
Additionally, HTML5 forbids nesting any of the
following elements inside address: hi-heé,
article, address, aside, footer, header,
hgroup, nav, and section.

See Chapter 3 to learn more about the
article and footer elements.

Text 103

Creating a Figure

As you well know, it's a common conven-
tion in the print world to associate figures
with text. A figure may be a chart, a graph,
a photo, an illustration, a code segment,
and so on. You've seen these at play in
newspapers, magazines, reports, and
more. Why, this very book has figures on
most pages.

Prior to HTML5, there wasn’t an element
designed for this purpose, so developers
cobbled together solutions on their own,
often involving the less-than-ideal, non-
semantic div element. HTML5 changes
that with figure and figcaption. By
definition, a figure is a self-contained
piece of content (with an optional caption)
that is referred to by the main content of
your document (@) and @). The optional
figcaptionis a figure’s caption or leg-
end and may appear either at the begin-
ning or at the end of a figure’s content

To create a figure and
figure caption:
1. Type <figure>.

2. Optionally, type <figcaption> to begin
the figure’s caption.

3. Type the caption text.

4. Type </figcaption> if you created a
caption in steps 2 and 3.

5. Create your figure by adding code for
images, videos, data tables, and so on.

6. If you didn'tinclude a figcaption
before your figure’s content, optionally
follow steps 2—4 to add one after the
content.

7. Type </figure>.

o This figure has a chart image, though more
than one image or other types of content (such
as a data table or video) are allowed as well. The
figcaption elementisn’t required, but it must

be the first or last element in a figure if you do
include it. A figure doesn’t have a default styling
aside from starting on its own line in modern
browsers

<body>

<article>
<h1>2011 Revenue by Industry</h1>
... [report content] ...

<figure>
<figcaption>Figure 3: 2011 Revenue
by Industry</figcaption>

<img src="chart-revenue.png"
width="180" height="143" alt=
"Revenue chart: Clothing 42%,
Toys 36%, Food 22%" />
</figure>

<p>As Figure 3 illustrates, ... </p>

... [more report content] ...
</article>

</body>
</html>

104 Chapter 4

¥2) Creating a Figure - Mozilla Firefos 10| x|

File Edit ‘Wew History EBookmarks Tools Help

{ | Creating a Figure | + | M

2011 Revenue by Industry

.. [report content] . . .

Figure 3: 2011 Revenue by Industry

A5 Figure 3 fllustrates, . .

... [more report content] . . .

0 The figure with the chart and caption appears
within the article text. It would be simple to
style the figure with CSS so, for example, it has a
border and so the article text wraps around it.

Typically, figure is part of the content
that refers to it (., but it could also live else-
where on the page or on another page, such
as in an appendix.

The figure element may include
multiple pieces of content. For instance,
could include two charts: one for revenue and
another for profits. Keep in mind, though, that
regardless of how much content a figure
has, only one figcaption is allowed.

Don't use figure simply as a means to
embed all instances of self-contained content
within text. Oftentimes, the aside element
may be appropriate instead (see “Specifying
an Aside” in Chapter 3).

The figure element is known as a
sectioning root in HTML5, which means it

can have h1-h6 headings (and thus, its own
outline), but they don’t contribute to the
document outline. This is very different than
sectioning content. Please see “Understand-
ing HTML5’s Document Outline” in Chapter 3.

You can’t use the optional figcaption
element unless it's in a figure with other
content.

figcaption text doesn’t have to begin
with “Figure 3” or “Exhibit B.” It could just as
well be a brief description of the content, like a
photo caption.

If you include a figcaption, it must be
either the first or last element of the figure.

Text 105

Specifying Time

You can mark up a precise time or calendar
date with the time element. This element
is new in HTMLS5. (See the sidebar “Under-
standing the datetime Format” for more
specifics about the calendar date system.)

One of the most common uses of time is
to indicate the publication date of an arti-
cle element. To do so, include the pubdate
attribute. The time element with pubdate
represents the publication date of the
nearest ancestor article element @. You
could also time-stamp an article’s reader-
submitted comments with time, datetime,
and pubdate, assuming each comment

is wrapped in an article element that is
nested in the article to which the com-
ment relates (see Example 2 of the sidebar
in “Creating an Article” in Chapter 3).

You can represent time with the time
element in a variety of ways () and @).
The optional text content inside time (that
is, <time>text</time>) appears on the
screen as a human-readable version (@
and @) of the optional, machine-readable
datetime value.

o As is proper, the datetime attribute and the
time element’s text reflect the same date, though
they can be written differently than one another
(see for more examples). This time element
represents the date the article was published,
because the pubdate attribute is included.

<body>

<article>
<header>
<h1>Cheetah and Gazelle Make Fast
Friends</h1>
<p><time datetime="2011-10-15"
pubdate="pubdate">October 15,
2011</time></p>
</header>

... [article content] ...
</article>

</body>
</html>

=0f x|

File Edit Miew History EBoockmarks Tools Help

) specifying Time - Mozilla Fir

| | | Specifying Time | + | =

Cheetah and Gazelle Make
Fast Friends

October 15, 2011

.. [article content]

0 The article’s publication date appears
underneath its heading. The text content version
of the time element displays, not the datetime
value.

106 Chapter 4

G The time element can be utilized several
ways. The simplest form (the first example) lacks
a datetime attribute. But it does provide the date
and times in the valid format as required when
datetime is omitted. The top three examples
contain time and/or date with text inside time,
which will display on the screen (). | suggest you
always include this human-readable form of the
time, since, currently, browsers won’t display a
value otherwise

<body>

<p>The train arrives at <time>08:45</time>
and <time>16:20</time> on
<time>2012-04-10</time>.</p>

<p>We began our descent from the peak of
Everest on <time datetime="1952-06-12T11:
05:00">June 12, 1952 at 11:05 a.m.
</time></p>

<p>They made their dinner reservation
for <time datetime="2011-09-20T18:
30:00">tonight at 6:30</time>.</p>

<p>The record release party is on <time
datetime="2011-12-09"></time>.</p>

</body>
</html>

¥) specifying Time - Mozilla p 10| =|
File Edit ‘ew History Bookmarks Tools Help

|| Specifying Time | + | *

The train armves at 0845 and 16:20 on
2012-10-04.

We began our descent from the peak of
Ewerest onJune 12, 1952 at 11:05 am.

They made thewr dinner reservation for tomght
at &:30.

The record release party 1z on .

0 The first three paragraphs show a time. The
last does not (see the last tip).

To specify a precise time,
calendar date, or both:
1. Type <time to begin a time element.

2. If desired, type datetime="time" where
time is represented in the approved
format (see the “Understanding the
datetime Format” sidebar).

3. If the time represents the publication
date of an article or the whole page,
type either pubdate="pubdate" or
pubdate.

4. Type > to complete the start tag.

5. If you want the time to display in the
browser, type text that reflects the time,
the date, or both (see the first tip about
the allowed text format).

6. Type </time>.

If you omit the datetime attribute, the
text content must conform to the valid date or
time format. In other words, the first example
in (9 could not be coded as <p>The train
arrives at <time>8:45 a.m.</time> and
<time>4:20 p.m.</time> on <time>October
4th, 2012</time>.</p>. However, when you
do include datetime, you’re free to represent
the date or time in the text content as you
wish, as seen in the second and third exam-
ples of

Don’t use time to mark up imprecise
dates or times, such as "the mid-1900s," "just
after midnight,” "the latter part of the Renais-
sance," or "early last week."

Always include a text version of the time
and date inside the time element if you want
it to show in your page. If it’s missing, brows-
ers are supposed to display text that is based
on datetime’s value, but support is lacking
greatly at the time of this writing

continues on page 109

Text 107

Understanding the datetime Format

The time element’s time is based on a 24-hour clock with an optional time-zone offset from UTC
(Coordinated Universal Time). The datetime attribute provides the date and time in a machine-
readable format, which I've simplified for this initial example:

YYYY-MM-DDThh:mm:ss
For example (local time):
2011-11-03T17:19:10

This means “November 3, 2011, at 10 seconds after 5:19 p.m. local time.” T separates the date
(YYYY-MM-DD) and time (hh:mm:ss), and if you include a time, the seconds are optional. (You
may also provide time with milliseconds in the format of hh:mm.sss. Note the period before the
milliseconds.)

If you'd like, you can represent your time in a global context instead. Add a Z at the end, and the
time zone is UTC.

For example (global time in UTC):
2011-11-03T17:19:10Z

Or, you can specify a time-zone offset from UTC by omitting Z and preceding the offset with
= (minus) or + (plus).

For example (global time with offset from UTC):
2011-11-03T17:19:10-03:30

This means “November 3, 2011, at 10 seconds after 5:19 p.m. Newfoundland standard time
(it’'s minus three and a half hours from UTC).” A list of time zones by UTC offsets is available at
http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset.

If you do include datetime, it doesn’t require the full complement of information | just described,
as the examples in show. Technically speaking, dates in the time element are based on the
proleptic Gregorian calendar (as you may know, the Gregorian calendar is the internationally
accepted civil calendar system in common use today). As such, HTML5 recommends you don’t
use it for pre-Gregorian dates (chances are this won’t be an issue for your content, but just so you
know about it). There has been a lot of discussion about this limitation, but it’s a complicated topic.
Read http://dev.w3.org/htmlI5/spec-author-view/the-time-element.html for more information and
examples, or www.quirksmode.org/blog/archives/2009/04/making_time_saf.html for an extensive
explanation of some of the issues.

108 Chapter 4

http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset
http://dev.w3.org/html5/spec-author-view/the-time-element.html
www.quirksmode.org/blog/archives/2009/04/making_time_saf.html

If you use time with pubdate to indicate
an article’s publication date, it’s com-

mon but not mandatory to place it in either a
header or footer element of the article
element. Regardless, be sure it’s nested some-
where within the relevant article.

If a time element with the pubdate
attribute doesn’t have an article element as
an ancestor, it represents the publication date
and time of the whole page.

You can specify pubdate as either
<time pubdate></time>
or <time pubdate="pubdate"></time>.

However, if you include it, either datetime
or a text content version of the time is
required

The datetime attribute’s machine-
readable format (see the “Understanding the
datetime Format” sidebar) allows for syncing
dates and times between Web applications.
As of this writing, no browser displays the
datetime value () and ().

You may not nest a time element inside
another one.

Text 109

Marking Important
and Emphasized Text

The strong element denotes important
text, while em conveys emphasis. You can
use them individually or together as your
content requires (@) and ©).

To mark important text:
1. Type .

2. Type the text that you want to mark as
important.

3. Type .

To emphasize text:
1. Type .

2. Type the text that you want to
emphasize.

3. Type .

Do not use the b and i elements as
replacements for strong and em, respectively.
Although they may look similar in a browser,
their meanings are very different (see the
sidebar “The b and i Elements: Redefined in
HTML5”).

You may nest strong text inside a
phrase that is also marked with strong. If you
do, the importance of strong text increases
each time it’s a child of another strong.

The same is true of the level of emphasis for
em text nested in another em. For example,
“due by November 17th” is marked as more
important semantically than the other strong
text in this sentence: <p>Remember
that entries are due by
November 17th.</p>.

You can style any text as bold or italic
with CSS, as well as override the browser’s
default styling of elements like strong and em
. For details, consult “Creating Italics” and
“Applying Bold Formatting” in Chapter 10.

o The first sentence has both strong and em,
while the second has em only. If under any
circumstances were marked up instead as
under any circumstances,

it would have greater importance than the text
contained in the surrounding strong.

<body>

<p><strongsWarning: Do not approach the
zombies under any circumstances</ems.
 They may look
friendly, but that's just because they want
to eat your arm.</p>

</body>
</html>

) Importance and Emphasis - Mi J | i |I:I|5|
File Edit WYew History Bookmar

Tools _ﬂelp
L+ :

|| Importance and Emphasis

Warning: Do not approach the zombies under any
circumstances. They may fook friendly, but that's just
because they want to eat your arm,

0 Browsers typically display strong text in
boldface and em text in italics. If em is a child of a
strong element (see the first sentence in &Y), its
text will be both italicized and bold.

110 Chapter 4

The b and i Elements: Redefined in HTML5

HTML5 focuses on semantics, not on an element’s presentation. The b and i elements are hold-
overs from the earliest days of HTML, when they were used to make text bold or italic (CSS didn’t
exist yet). They rightly fell out of favor in HTML 4 and XHTML 1 because of their presentational
nature. Coders were encouraged to use strong instead of b, and em instead of i. It turns out,
though, that em and strong are not always semantically appropriate. HTML5 addresses this by
redefining b and i.

Some typographic conventions in traditional publishing fall through the cracks of available HTML
semantics. Among them are italicizing certain scientific names (for example, “The Ulmus ameri-
cana is the Massachusetts state tree.”), named vehicles (for example, the “We rode the Orient
Express.”), and foreign (to English) language phrases (for example, “The couple exhibited a joie de
vivre that was infectious.”). These terms aren’t italicized for emphasis, just stylized per convention.

Rather than create several new semantic elements (and further muddy the waters) to address
cases like these, HTMLS5 takes a practical stance by trying to make do with what is available: em for
all levels of emphasis, strong for importance, and b and i for the through-the-cracks cases.

The notion is that although b and i don’t carry explicit semantic meaning, the reader will recognize
that a difference is implied because they differ from the surrounding text. And you're still free to
change their appearance from bold and italics with CSS. HTML5 emphasizes that you use b and i
only as a last resort when another element (such as strong, em, cite, and others) won’t do.

The b Element in Brief

HTMLS redefines the b element this way:

The b element represents a span of text to which attention is being drawn for utilitarian pur-
poses without conveying any extra importance and with no implication of an alternate voice
or mood, such as key words in a document abstract, product names in a review, actionable
words in interactive text-driven software, or an article lede.

For example:

<p>The XR-5, also dubbed the Extreme Robot 5, is the best robot we've ever
tested.</p>

The b element renders as bold by default.

The i Element in Brief
HTML5 redefines the i element this way:

The i element represents a span of text in an alternate voice or mood, or otherwise offset
from the normal prose in a manner indicating a different quality of text, such as a taxonomic
designation, a technical term, an idiomatic phrase from another language, a thought, or a
ship name in Western texts.

Here are some examples:

<p>The <i lang="1a">Ulmus americana</i> is the Massachusetts state tree.</p>
<p>The <i>Orient Express</i> began service in 1883.<p>

<p>The couple exhibited a <i lang="fr">joie de vivre</i> that was infectious.<p>
The i element displays in italics by default.

Text 111

- - - -
Indlcatlng a Cltatlon O The cite element is appropriate for marking up
the titles of works of art, music, movies, and books.
or Reference

Use the cite element for a citation or ref-

<p>He listened to <cite>Abbey Road</cite>

erence to a source. Examples include the while watching <citesA Hard Day's Night
title of a play, script, or book; the name of a </cite> and reading <cite>The Beatles
song, movie, photo, or sculpture; a concert Anthology</cite>.

or musical tour; a specification; a news-

paper or legal paper; and more (0 and 0) <p>When he went to The Louvre, he learned

that <cites>Mona Lisa</cite> is also known
as <cite lang="it">La Gioconda</cite>.</p>

To cite a reference:

1. Type <cite>.

2. Type the reference’s name.

) Indicating a Citation - Mo fo; o [m] |
3. Type </cite>. File Edit ‘Wiew Hiskary Bookmarks Tools Help

| | Indicating a Citation I A | =
For instances in which you are quoting
from the cited source, use the blockquote He listened to Abbey foad while watching 4 Hard
or q elements, as appropriate, to mark up the Deey's Might and reading The Beatles Anthology.
quoted text (see “Quoting Text”). To be clear,
cite is only for the source, not what you are When he went to The Lousre, he learned that
quoting from it. Mona Lisa 15 also known as La Gloconda.

0 The cite element renders in italics by default.

HTMLS5 and Using the cite Element for Names

Amid a good amount of disagreement from the development community, HTML5 explicitly
declares that using cite for a reference to a person’s name is invalid, even though previous ver-
sions of HTML allowed it and many developers and designers used it that way.

The HTML 4 spec provides the following example (I've changed the element names from upper-
case to lowercase):

As <cite>Harry S. Truman</cite> said,
<q lang="en-us">The buck stops here.</q>

In addition to instances like that, sites have often used cite for the name of visitors who leave
comments in blog postings and articles (the default WordPress theme does too).

Many developers have made it clear that they intend to continue to use cite on names associ-
ated with quotes in their HTML5 pages because HTML5 doesn't provide an alternative they
deem acceptable (namely, the span and b elements). Jeremy Keith made the case vociferously in
http://24ways.org/2009/incite-a-riot/.

112 Chapter 4

http://24ways.org/2009/incite-a-riot/

o A blockquote can be as short or as long as you
need. Optionally, include the cite attribute—not

to be confused with the cite element shown in
the first paragraph—to provide the location of the
quoted text. However, browsers don’t display the
cite attribute’s information (. (See the second
tip for a related recommendation.)

<body>

<p>He enjoyed this selection from <cite>The
Adventures of Huckleberry Finn</cite> by
Mark Twain:</p>

<blockquote cite="http://www.marktwain
books.edu/the-adventures-of-huckleberry
-finn/">
<p>We said there warn't no home like a
raft, after all. Other places do seem
so cramped up and smothery, but a
raft don't. You feel mighty free and
easy and comfortable on a raft.</p>
</blockquote>

<p>It reminded him of his own youth exploring
the county by river.</p>

</body>
</html>

e

Fle Edt View History Bookmarks Tools Help |

| Quoting Text | -+

IIe enjoyed thus selection from The Adventures of
Huckloberry Finn by Mark Tarain:

We said there warn't no home like a raft, after all
Other places do seem so cramped up and
smothery, but a raft don't. You feel nughty free and
easy and comfortable on a raft.

Tt remmnded him of his own youth exploring the nounty by nwer

0 Browsers typically indent blockquote text by
default. Historically, browsers haven't displayed
the cite attribute’s value (see the second tip for
a related recommendation). The cite element, on
the other hand, is supported by all browsers and
typically renders in italics, as shown. All of these
defaults can be overridden with CSS.

Quoting Text

There are two special elements for
marking text quoted from a source. The
blockquote element represents a quote
(generally a longer one, but not necessar-
ily) that stands alone) and renders on
its own line by default). Meanwhile, the
q element is for short quotes, like those
within a sentence @ (on the next page).

Browsers are supposed to enclose q
element text in language-specific quotation
marks automatically, but Internet Explorer
didn’t support this until IE8. Some browsers
have issues with nested quotes, too. Be
sure to read the tips to learn about alterna-
tives to using the q element.

To quote a block of text:

1. Type <blockquote to begin a block
quote.

2. If desired, type cite="url", where url
is the address of the source of the
quote.

3. Type > to complete the start tag.

4. Type the text you wish to quote, sur-
rounding it with paragraphs and other
elements as appropriate.

5. Type </blockquote>.

Text 113

To quote a short phrase:

1. Type <q to begin quoting a word or
phrase.

2. If desired, type cite="url", where url
is the address of the source of the
quote.

3. If the quote’s language is different than
the page’s default language (as speci-
fied by the 1ang attribute on the html
element), type lang="xx", where xx is
the two-letter code for the language the
quote will be in. This code is supposed
to determine the type of quote marks
that will be used (“” for English, «» for
many European languages, and so on),
though browser support for this render-
ing can vary.

4. Type > to complete the start tag.
5. Type the text that should be quoted.
6. Type </q>.

@D Although it’s allowed, avoid placing
text directly between the start and end
blockquote tags. Instead, enclose it in p
or other semantically appropriate elements
within the blockquote.

You can use the optional cite attribute
on blockquote and q to provide a URL to the
source you are quoting. Unfortunately, brows-
ers traditionally haven't presented the cite
URL to users (), so it’s not the most useful

of attributes on its own. Consequently, if you
do include cite, | recommend you repeat the
URL in a link (the a element) in your content,
allowing visitors to access it. Less effectively,
you could expose cite’s value via JavaScript.

G Add the lang attribute to the q element if the
quoted text is in a different language than the
page’s default (as specified by the 1lang attribute
on the html element).

<body>

<p>And then she said, <q>Have you read
Barbara Kingsolver's <cite>High Tide in
Tucson</cite>? It's inspiring.</q></p>

<p>She tried again, this time in French:
<q lang="fr">Avez-vous lu le livre
<cite>High Tide in Tucson</cite> de
Kingsolver? C'est inspirational.</q></p>

</body>
</html>

114 Chapter 4

) Quoting Text - Mozilla Firefox O] x|
File Edit Wew History EBookmarks Tools Help
|| Quoting Text I + | &

And then she said, “Have you read Barbara
Eingzolver's High Tide in Theson' It's inspiring ™

She tried again, this tme m French: “&vez-wous lu le
lvre High Tide in Tucson de Kingsolver? Clest
mspirational ™

0 Browsers are supposed to add curly double
quotes around q elements (and curly single quotes
around nested q elements) automatically. As
shown here, Firefox does, but not all browsers do
(for example, older versions of Internet Explorer).

The blockquote element is known as

a sectioning root in HTML5, which means

it can have h1-h6 headings (and thus, its
own outline), but they don’t contribute to the
document outline. This is very different than
sectioning content. Please see “Understand-
ing HTML5’s Document Outline” in Chapter 3.

The q element is invalid for a quote that
extends beyond one paragraph.

Be sure you don't use q simply because
you want quotation marks around a word or
phrase. For instance, <p>Every time I hear
the word <gq>soy</q>, I jump for joy.</p>
is improper because “soy” isn't a quote from a
source.

You can nest blockquote and q ele-
ments. For example, <p>The short story
began, <q>When she was a child, she
would say, <q>Howdy, stranger!</q> to
everyone she passed.</q></p>. Nested

g elements should automatically have the
appropriate quotation marks—in English the
outer quotes should be double and the inner
ones should be single—but browser support
varies. Since outer and inner quotations are
treated differently in languages, add the lang
attribute to q as needed ({9 and 0.

Because of cross-browser issues with

q (), many (probably the majority of) coders
choose to simply type the proper quotation
marks or use character entities instead of the
q element. In his in-depth article “Quoting
and citing with <blockquote>, <q>, <cite>,
and the cite attribute” at HTMLS5 Doctor,

Oli Studholme discusses this and more, such
as a series of options for styling quotation
marks with the q element and related browser
support information (http://htmi5doctor.com/
blockquote-g-cite/).

Text 115

http://html5doctor.com/blockquote-q-cite/
http://html5doctor.com/blockquote-q-cite/

Highlighting Text

We've all used a highlighter pen at some
point or another. Maybe it was when
studying for an exam or going through a
contract. Whatever the case, you used the
highlighter to mark key words or phrases
that were relevant to a task.

HTMLS5 replicates this with the new mark
element. Think of mark like a semantic
version of a highlighter pen. In other words,
what’s important is that you’re noting cer-
tain words; how they appear is irrelevant.
Style its text with CSS as you please (or not
at all), but use mark only when it’s pertinent
to do so.

No matter when you use mark, it's to draw
the reader’s attention to a particular text
segment. Here are some use cases for it:

m To highlight a search term when it
appears in a search results page or an
article. When people talk about mark,
this is the most common context. Sup-
pose you used a site’s search feature
to look for “solar panels.” The search
results or each resulting article could
use <mark>solar panels</mark> to
highlight the term throughout the text.

m To call attention to part of a quote that
wasn’t highlighted by the author in its
original form (@) and ©).

= To draw attention to a code fragment

(@ and @)

o Although mark may see its most widespread
use in search results, here’s another valid use of it.
The phrase “15 minutes” was not highlighted in the
instructions on the packaging. Instead, the author
of this HTML used mark to call out the phrase as
part of the story. Default browser rendering of
mark text varies

<body>

<p>So, I went back and read the instructions
myself to see what I'd done wrong. They
said:</p>

<blockquote>
<p>Remove the tray from the box. Pierce
the overwrap several times with a
fork and cook on High for <marks>is
minutes</mark>, rotating it half way
through.</p>
</blockquote>

<p>I thought he'd told me fifty. No
wonder it exploded in my microwave.</p>

</body>
</html>

=10l x|

File Edit Wjew History Bookmarks Tools Help
L+ ;

|| Highlighting Text

So, I went back and read the mstructions myself to see
what I d done wrong, They said:

Remove the tray from the box. Pierce the
overwrap several tunes with a fork and
cook on High for 15 minutes, rotating it
half way through.

T thought he'd told me fifty. Mo wonder it exploded m

My ticrowave,

0 Browsers with native support of the mark
element display a yellow background behind the
text by default. Older browsers don'’t, but you can
tell them to do so with a simple rule in your style
sheet (see the tips).

116 Chapter 4

G This example uses mark to draw attention to a
segment of code.

<body>

<p>It's bad practice to use a class name that
describes how an element should look, such
as the highlighted portion of CSS below:
<pre>
<code>
<mark>.greenText</marks> {
color: green;
}
</code>
</pre>

</body>
</html>

¥2) Highlighting Text - Mozilla Firefox =10] x|
File Edit Wew History Bookmarks Tools Help

-

| || Highlighting Text

It's bad practice to use a class name that
describes how an element should look, such as

the highlighted portion of C3E below:

«greenText {
color: green;
¥

0 This code noted with mark is called out.

To highlight text:
1. Type <mark>.

2. Type the word or words to which you
want to call attention.

3. Type </mark>.

The mark element is not the same as
either em (which represents emphasis) or
strong (which represents importance). Both
are covered in this chapter as well.

Since mark is new in HTMLS5, older
browsers don’t render a background color by
default) and (). You can instruct them to
do so by adding mark { background-color:
yellow; } to your style sheet.

Be sure not to use mark simply to give
text a background color or other visual treat-
ment. If all you’re looking for is a means to
style text and there’s no proper semantic
HTML element with which to wrap it, use the
span element (covered in this chapter) and
style it with CSS.

Text 117

Explaining O Use the optional title attribute to provide the

expanded version of an abbreviation. Alternatively,

Abbl’EViatiOHS and arguably preferably, you could place the
expansion in parentheses after the abbreviation.
L Or mix and match. Most people will be familiar
Abbreviations abound, whether as Jr., M.D., with words like /aser and scuba, so marking
or even good oI’ HTML. You can use the them up with abbr and providing titles isn’t really
abbr element to mark up abbreviations necessary, but I've done it here for demonstration
purposes.

and explain their meaning (@ through @).

You don’t have to wrap every abbrevia-
tion in abbr, only when you think it would <body>
be helpful for visitors to be given the

. <p>The <abbr title="National Football
expanded meaning.

League">NFL</abbr> promised a <abbr
title="light amplification by

To exp|ain abbreviations: stimulated emission of radiation">
laser</abbr> show at 9 p.m. after every
1. Type <abbr. night game.</p>

2. Optionally, next type . .
title=" ion" where expansion <p>But, that's nothing compared to what
itie=sexpansion’, W xp 1 <abbr>MLB</abbr> (Major League

is the words that represent the Baseball) did. They gave out free

abbreviation. <abbr title="self-contained underwater
breathing apparatus">scuba</abbr> gear

3. Type >. during rain delays.</p>
4. Then type the abbreviation itself.
</body>
5. Finally, finish up with </abbr>. </html>
6.

Optionally, type a space and
(expansion), where expansion is the
words that represent the abbreviation.

118 Chapter 4

¥%) abbreviations - Mozilla Firefox o]
File Edit Yew Hiskary Bookmarks Tools Help
| || Abbreviations | + | =

The IEL protised a laser show at 3 pom. after
every night game.

But, that's nothing compared to what MLE (Major
League Baszeball) did. They gave cut free scuba

gear during ram delays.

0 When abbreviations have a title attribute,
Firefox and Opera draw attention to them with a
dotted underline. (You can instruct other browsers
to do the same with CSS; see the tips.) In all
browsers except IE6, when your visitors hover on
an abbr, the contents of the element’s title are
shown in a tool tip.

ﬁ

€« C M (D bniceontheoase.com/htmirss/fex: 57 '\n

The WFL promised a fser show at 9 p.m. after every night game.

bght amplification by sbmulated emission of radiation
But, that's nothmg compared Lo what MLE Eﬂaiol rcaguc

Baseball) did. They gave out free scuba gear during rain delays.

G Chrome and some other browsers display the
title of abbreviations as a tool tip, but they don’t
display the abbreviation itself any differently
unless you apply some CSS yourself.

It's common practice to include an abbre-
viation’s expansion (by way of a title or a
parenthetical) only the first time it appears on
a page

A parenthetical abbreviation expan-
sion is the most explicit way to describe an
abbreviation, making it available to the widest
set of visitors (,). For instance, users on touch
screen devices like smartphones and tablets
may not be able to hover on an abbr element
to see a title tool tip. So if you provide an
expansion, consider putting it in parentheses
whenever possible.

If you use an abbreviation in its plural
form, make the expansion plural as well.

As a visual cue to sighted users, brows-
ers like Firefox and Opera display abbr with

a dotted bottom border if it has a title (). If
you’d like to replicate that effect in all brows-
ers (except IE6), add the following to your style
sheet: abbr[title] { border-bottom: 1px
dotted #000; }. Browsers provide the title
attribute’s contents as a tool tip regardless
of whether the abbr is styled with a border.

If you don't see the dotted bottom border
on your abbx in Internet Explorer 7, try adjust-
ing the parent element’s CSS line-height
property (see Chapter 10).

IE6 doesn’t support abbr, so you won’t
see a border or a tool tip, just the text. If you
really want to style abbx in IE6, you could

put document.createElement('abbr'); in
a JavaScript file targeted for IE6 before your
CSS. | say skip that and let IE6 be an outlier in
this case. (See Chapter 11 to learn more about
document.createElement as it pertains to
styling elements that are new in HTML5 in IES
and lower.)

HTML had an acronym element before
HTMLS5, but developers and designers often
were confused by the difference between an
abbreviation and an acronym, so HTML5 elimi-
nated the acronym element in favor of abbr
for all instances.

Text 119

Defining a Term

The dfn element marks the one place in
your document that you define a term. Sub-
sequent uses of the term are not marked.
You wrap dfn only around the term you’re
defining, not around the definition 0.

It's important where you place the dfn in
relation to its definition. HTML5 states,
“The paragraph, description list group,
or section that is the nearest ancestor of
the dfn element must also contain the
definition(s) for the term given by the dfn
element.” This means that the dfn and its
definition should be in proximity to each
other. This is the case in both and the
example given in the third tip; the dfn and
its definition are in the same paragraph.

To mark the defining
instance of a term:

1. Type <dfn>.
2. Type the term you wish to define.
3. Type </dfn>.

You can also use dfn in a definition list
(the d1 element). See Chapter 15.

If you want to direct users to the defining
instance of a term, you can add an id to the
dfn and link to it from other points in the site.

dfn may also enclose another phras-
ing element like abbx, when appropriate.

For example, <p>A <dfn><abbr title=
"Junior">Jr.</abbr></dfn> is a son with
the same full name as his father.</p>.

HTML5 says that if you use the optional
title attribute on a dfn, it should have the
same value as the dfn term. As in the previous
tip, if you nest a single abbr in dfn and the
dfn has no text node of its own, the optional
title should be on the abbr only.

o Note that although pleonasm appears twice
in the example, dfn marks the second one only,
because that’s when | defined the term (that is,
it’s the defining instance). Similarly, if | were to
use pleonasm subsequently in the document,

I wouldn’t wrap it in dfn because I've already
defined it. By default, browsers style dfn text
differently than normal text 0 Also, you don’t
have to use the cite element each time you use
dfn, just when you reference a source.

<body>

<p>The contestant was asked to spell
"pleonasm."” She requested the definition
and was told that <dfn>pleonasm</dfn>
means "a redundant word or expression"
(Ref: <cites<a href=" http://dictionary.
reference.com/browse/pleonasm" rel=
"external">dictionary.com</cite>).</p>

</body>
</html>

Fle Fdit VWiew Histry Bonkmarks Tonks Help

| Defining Instance of a Term I -+ -

The contestant was asked to spell "pleonasm " She requested
the definttion and was told that plsonasm means "a redundant
word or expression” (Ref dictionary.com).

0 The dfn element renders in italics by default in
some browsers (Firefox, in this case), just like cite,
but not in Webkit-based browsers such as Safari
and Chrome. You can make them consistent by
adding dfn { font-style: italic; } to your style
sheet (see Chapters 8 and 10).

120 Chapter 4

o One use of the sup element is to indicate
footnotes. | placed the footnotes in a footer within
the article rather than on the page at large
because they are associated. | also linked each
footnote number within the text to its footnote in
the footer so visitors can access them more easily.
Note, too, that the title attribute on the links
provides another cue.

<body>

<article>

<h1>Famous Catalans</h1>

<p>When I was in the sixth grade, I
played the cello. There was a
teacher at school who always used
to ask me if I knew who "Pablo
Casals" was. I didn't at the time
(although I had met Rostropovich once
at a concert). Actually, Pablo Casals
real name was <i>Pau</i> Casals, Pau
being the Catalan equivalent of Pablo
<a href="#footnote-1" title="Read
footnote">¹.</p>

<p>In addition to being an amazing
cellist, Pau Casals is remembered in
this country for his empassioned
speech against nuclear proliferation
at the United Nations <a href=
"#footnote-2" title="Read
footnote">² which
he began by saying "I am a Catalan.
Catalonia is an oppressed nation."</p>

<footer>
<p>¹It means Paul in
English.</p>
<p>²In 1963, I believe.</p>
</footer>
</article>

</body>
</html>

Creating Superscripts
and Subscripts

Letters or numbers that are raised or
lowered slightly relative to the main body
text are called superscripts and subscripts,
respectively @). HTML includes elements
for defining both kinds of text. Com-

mon uses for superscripts include mark-
ing trademark symbols, exponents, and
footnotes €. Subscripts are common in
chemical notation.

¥)) Superscript - Mozilla Firefox i [

Eile Edl Wew Hiloy QGookiaks Tols Hel

| || Superstripl I | e

Famous Catalans

When I was m the sixth grade, I played the cello. There was a teacher
al sehool who always used Lo ask me T T knew who "Pablo Casals”
was. I didn't ar the time (although I had met Eostropovich once ar a
concert). Actually, Pablo Cagals' real name was Fau Casals, Pau

heing the Catalan eruwalent oFPahlol_

In additon to being an amarng cellist, Pau Casals 1s remembered m
this country for his empassioned speech against nuclear proliferation
at the Unuted Nmomf which he began by saying "L am a Catalan.
Cataloma 15 an oppressed nation."

1t rueems P in Enghsh

In 1963, T believe.

()UnmNUnmeWJhesubandsupebmenm
spoil the line spacing. Notice that there is

more space between lines 4 and 5 of the first
paragraph and lines 2 and 3 of the second than
between the other lines. A little CSS comes

to the rescue, though; see the sidebar “Fixing
the Spacing between Lines when Using sub

or sup” to learn how to fix this. You could also
change the treatment of linked superscripts so
that an underline doesn’t appear so far from the
superscripted text.

Text 121

To create superscripts or subscripts:

1. Type <sub> to create a subscript or
<sup> to create a superscript.

2. Type the characters or symbols that
represent the subscript or superscript.

3. Type </sub> or </sup>, depending on
what you used in step 1, to complete
the element.

@D Most browsers automatically reduce the
font size of sub- or superscripted text by a few
points.

Superscripts are the ideal way to mark
up certain foreign language abbreviations like
M'e for Mademoiselle in French or 32 for ter-
cera in Spanish, or numerics like 2™ and 5.

One proper use of subscripts is for
writing out chemical molecules like H,0. For
example, <p>I'm parched. Could I please
have a glass of H₂02</p>.

Super- and subscripted characters gently
spoil the even spacing between lines (). See
the sidebar for a solution.

122 Chapter 4

Fixing the Spacing between Lines when Using sub or sup

The sub and sup elements tend to throw off the line height between lines of text). Fortunately,
you can set it straight with a bit of CSS.

The following code comes from Nicolas Gallagher and Jonathan Neal’s excellent normalize.css
(http://necolas.github.com/normalize.css/). They didn’t invent the method that follows; they bor-
rowed it from https://gist.github.com/413930 and removed the code comments. The second GitHub
link includes a full explanation of what this CSS does, so | encourage you to give it a look. | also
recommend checking out normalize.css, which you can use on your own projects. It helps you
achieve a consistent baseline for rendering across browsers and is documented thoroughly (see
“Resetting or Normalizing Default Styles” in Chapter 11).

/*
* Prevents sub and sup affecting line-height in all browsers
* gist.github.com/413930

*/

sub,

sup {
font-size: 75%;
line-height: o;
position: relative;
vertical-align: baseline;

}

sup {
top: -0.5em;

}

sub {
bottom: -0.25em;

}

You may need to adjust this CSS a bit to level out the line heights, depending on your content’s
font size, but this should give you a very good start at the least. You'll learn about creating style
sheets and how to add this CSS to your site in Chapter 8.

Text 123

http://necolas.github.com/normalize.css/
https://gist.github.com/413930

Noting Edits and
Inaccurate Text

Sometimes you may want to indicate
content edits that have occurred since the
previous version of your page, or mark up
text that is no longer accurate or relevant.
There are two elements for noting edits:
the ins element represents content that
has been added, and the del element
marks content that has been removed (@)
through @). You may use them together or
individually.

Meanwhile, the s element notes content
that is no longer accurate or relevant (it's
not for edits) (@ and @).

To mark an edit involving
newly inserted text:

1. Type <ins>.
2. Type the new content.

3. Type </ins>.

To mark an edit involving
deleted text:

1. Place the cursor before the text or ele-
ment you wish to mark as deleted.

2. Type .

3. Place the cursor after the text or ele-
ment you wish to mark as deleted.

4. Type .

o One item (the bicycle) has been added to this
gift list since it was previously published, and
purchased items have been removed, as noted by
the del elements. You are not required to use del
each time you use ins, or vice versa. Browsers
differentiate the contents of each element visually
by default

<body>
<h1>Charitable Gifts Wishlist</h1>

<p>Please consider donating one or more
of the following items to the village's
community center:</p>

2 desks</1i>
<li»1 chalkboard</1i>
a <abbr>OLPC</abbr> (One
Laptop Per Child) X0 laptops
</dels></1i>
<ins>1 bicycle</ins></1i>

</body>
</html>

) Noting Edits - Mozilla Firefox B 8 [l S|
File Edit Wew History Bookmarks Tools Help
| || Mating Edits | + | i

Charitable Gifts Wishlist

Pleaze consider donating one or more of the following
ttems to the village's community center:

o 2desles

o 1 chalkboard

o L OLPC (One Laptop Per Childy 0 laptops
® 1 bicycle

0 Browsers typically display a line through
deleted text and underline inserted text. You can
change these treatments with CSS.

124 Chapter 4

o Both del and ins are rare in that they can surround both phrasing (“inline” in pre-HTML5 parlance)
content and blocks of content, as shown here. However, default browser rendering varies ().

<body>
<h1>Charitable Gifts Wishlist</h1>

<p>Please consider donating one or more of the following items to the village's community
center:</p>

<ins>
<p>Please note that all gifts have been purchased.</p>
<p>Thank you so much for your generous donations!</p>
</ins>

2 desks</1i>
<li»1 chalkboard</1i>
4 <abbr>OLP(</abbr> (One Laptop Per Child) XO laptops</1i>
<ins>1 bicycle</ins»</1i>

</body>
</html>
) Noting Edits - Mozilla Firefox | l =1l =l
(© noting Edits Hle Edt Vew Hsory Gookmarks Tools Help
« C O fle B HTMLS2VOS/Cha T2 | A | L] uring Frirs [+] =

Charitable Gifts Wishlist Charitable Gifts Wishlist

Please consider donating one or more of the following items
to the willage's community center:

Please note that all zifts have been purchased. Pleace note that all pifts have been purchased.
Thank you so wech for your generous donafions! Think you se seuck for your yenerous domations!
* Zdesles * Ddeses
o Iehallbosed e 1 challkboard
© 4 OLPCHOne TaptepPer Chid S0 daptops * +OLPCAOne Lapiop-Per Chid) 30 aptops
o hieyee * 1bicycle

0 Most browsers, like Chrome (left), display del and ins wrapped around blocks of content by default
as expected. That is, they reflect that entire pieces of content have been deleted or inserted. As of this
writing, Firefox does not; it only renders the lines for del and ins text phrases within other elements.
See the “Getting del and ins to Display Consistently” sidebar to learn how to rectify this.

Text 125

To mark text that is no longer
accurate or relevant:

1. Place the cursor before the text you
wish to mark as no longer accurate or
relevant.

2. Type <s>.

3. Place the cursor after the text you wish
to mark.

4. Type </s>.

Both del and ins support two attributes:
cite and datetime. The cite attribute (not
the same as the cite element) is for providing
a URL to a source that explains why an edit
was made. For example, <ins cite="http://
www.movienews.com/ticket-demand-
high.html">2 p.m. (this show just
added!)</ins>. Use the datetime attribute
to indicate the time of the edit. (See “Specify-
ing Time” to learn about datetime’s accept-
able format.) Browsers don’t display the values
you assign to either of these attributes, so
their use isn’t widespread, but feel free to
include them to add context to your content.
The values could be extracted with JavaScript
or a program that parses through your page.

G This example shows an ordered list (the ol
element) of show times. The time slots for which
ticket availability is no longer relevant have been
marked with the s element. You can use s around
any phrases, not just text within list items (1i
elements), but not around a whole paragraph or
other “block-level” element like you can with del
and ins.

<body>
<h1>Today's Showtimes</h1>

<p>Tickets are available for the following
times today:</p>

<ins>2 p.m. (this show just added!)
</ins></1i>
<s>5 p.m.</s> SOLD OUT</1i>
<s>8:30 p.m.</s> SOLD OUT

</body>
</html>

) Noting Edits and Inaccurate Test = o o] e |
File Edit ‘iew History Bookmarks Tools Help

=

| | | Moting Edits and Inaccurate Text

Today's Showtimes

Tickets are avatlable for the following times today:

1. 2 p.m. (this show qust added
2. S S0OLD OUT

3. 830w SOLD OTTT

o The s element renders as a strikethrough by
default in browsers.

126 Chapter 4

Getting del and ins to Display
Consistently

Browsers render content in a block-level
del and ins inconsistently. Most display
a strikethrough for del and an under-
line for ins on all nested content as
expected, but at the least, Firefox does
not

You can rectify this with the following
explicit CSS rules (the * means that
every element inside del and ins gets
the treatment):

del * {
text-decoration:
line-through;

}
ins * {

text-decoration: underline;
}

Please consult Chapter 8 if you aren’t
sure how to add this CSS to a style
sheet.

Use del and ins anytime you want to
inform your visitors of your content’s evolu-
tion. For instance, you’ll often see them used
in a Web development or design tutorial to
indicate information learned since it was ini-
tially posted, while maintaining the copy as it
originally stood for completeness. The same is
true of blogs, news sites, and so on.

Text marked with the ins element is
generally underlined (). Since links are often
underlined as well (if not in your site, then in
many others), this may be confusing to visi-
tors. You may want to use styles to change
how inserted passages (or links) are displayed
(see Chapter 10).

Text marked with the del element

is generally struck out (). Why not just
erase it and be done with it? It depends on
the context of your content. Striking it out
makes it easy for sighted users to know
what has changed. (Also, screen readers
could announce the content as having been
removed, but their support for doing so has
been lacking historically.)

Only use del, ins, and s for their
semantic value. If you wish to underline or
strike out text purely for cosmetic reasons, you
can do so with CSS (see “Decorating Text” in
Chapter 10).

HTMLS5 notes that “The s element is not
appropriate when indicating document edits;
to mark a span of text as having been removed
from a document, use the del element.” You
may find the distinction a little subtle at times.
It’s up to you to decide which is the appropri-
ate semantic choice for your content.

Text 127

Marking Up Code

If your content contains code samples,

file names, or program names, the code
element is for you (@) and @). To show

a standalone block of code (outside of a
sentence), wrap the code element with a
pre element to maintain its formatting (see
“Using Preformatted Text” for an example).

To mark up code or a file name:
1. Type <code>.
2. Type the code or file name.

3. Type </code>.

You can change the default mono-
spaced font applied to code with CSS
(see Chapter 10).

o The code element indicates that the text

is code or a file name. It also renders as a
monospaced font by default (). If your code
needs to display < or » signs, use the &1t; and
> character entities instead, respectively. Here,
the second instance of code demonstrates this. If
you did use < and >, the browser would treat your
code as an HTML element, not text.

<body>

<p>The <code>showPhoto()</code> function
displays the full-size photo of the
thumbnail in our <code><ul id=
"thumbnail"></code> carousel list.</p>

<p>This CSS shorthand example applies a
margin to all sides of paragraphs:
<code>p { margin: 20px; }</code>. Take
a look at <code>base.css</code> to see
more examples.</p>

</body>
</html>

=10l x|

) Marking up Code - Mozilla Firefox
File Edit View History Bookmarks Tools Help

R -

|| Marking up Code

The showPhoto () function displays the fiull-size photo
of the thumbnatl m our <ul id="thumbnails"s
carousel list.

This C33 shorthand example applies a margin to all
sides of paragraphs: p { wargin: z0px:; i Takea
look at base.css to see more examples.

0 The code element’s text even looks like code
because of the monospaced default font.

128 Chapter 4

Other Computer and Related Elements: kbd, samp, and var

The kbd, samp, and var elements see infrequent use, but you may have occasion to take advan-
tage of them in your content. I'll explain each briefly.

The kbd Element
Use kbd to mark up user input instructions.

<p>To log into the demo:</p>

Type <kbd>tryDemo</kbd> in the User Name field</1li>
<kbd>TAB</kbd> to the Password field and type <kbd>demoPass</kbd></1i>
Hit <kbd>RETURN</kbd> or <kbd>ENTER</kbd></1i>

Like code, kbd renders as a monospaced font by default.

The samp Element
The samp element indicates sample output from a program or system.

<p>Once the payment went through, the site returned a message reading,
<samp>Thanks for your order!</samp></p>

samp also renders as a monospaced font by default.

The var Element
The var element represents a variable or placeholder value.

<p>Einstein is best known for <var>E</var>=<var>m</var><var>c</var>².
</p>

var can also be a placeholder value in content, like a Mad Libs sheet in which you’d put
<var>adjective</var>, <var>verb</var>, and so on.

var renders in italics by default.

Note that you can use the math and other MathML elements in your HTML5 pages for advanced
math-related markup. See http://dev.w3.org/html5/spec-author-view/mathml.html for more
information.

Text 129

http://dev.w3.org/html5/spec-author-view/mathml.html

Using Preformatted
Text

Usually, browsers collapse all extra returns
and spaces and automatically break

lines according to the size of the win-
dow. Preformatted text lets you maintain
and display the original line breaks and
spacing that you've inserted in the text. It
is ideal for computer code examples @,
though you can also use it for text (hello,
ASCI art!).

To use preformatted text:
1. Type <pre>.

2. Type or copy the text that you wish
to display as is, with all the necessary
spaces, returns, and line breaks. Unless
it is code, do not mark up the text with
any HTML, such as p elements.

3. Type </pre>.

o The pre element is ideal for text that contains
important spaces and line breaks, like the bit of
CSS code shown here. Note, too, the use of the
code element to mark up pieces of code or code-
related text outside of pre (see “Marking Up Code”
for more details).

<body>

<p>Add this to your style sheet if you want
to display a dotted border underneath the
<code>abbr</code> element whenever it has
a <code>title</code> attribute.</p>

<pre>
<code>
abbr[title] {
border-bottom: 1px dotted #000;
}

</code>
</pre>

</body>
</html>

) Preformatted text - Mozilla Fircfos [=101 =]

Preformatted test

Aded this Lo your style sheet il you want Lo display a dotted border

undemealh the sbbr elemenl whenever i has a cicle atinbule,

abbrlcicle]
border-bottom: 1px dotted H000:
H

0 Notice that the indentation and line breaks are
maintained in the pre content.

130 Chapter 4

Presentation Considerations
with pre

Be aware that browsers typically disable
automatic word wrapping of content
inside a pre, so if it’s too wide, it might
affect your layout or force a horizontal
scrollbar. The following CSS rule enables
wrapping within pre in many browsers,
but not in Internet Explorer 7 and below.

pre {

white-space: pre-wrap;

}

On a related note, in most cases | don’t
recommend you use the white-space:
pre; CSS declaration on an element
such as div as a substitute for pre,
because the whitespace can be cru-

cial to the semantics of the enclosed
content, especially code, and only pre
always preserves it. (Also, if the user has
disabled CSS in his or her browser, the
formatting will be lost.)

Please see CSS coverage beginning in
Chapter 7. Text formatting, in particular, is
discussed in Chapter 10.

Preformatted text is typically displayed
with a monospaced font like Courier or Courier
New 0 You can use CSS to change the font,
if you like (see Chapter 10).

If what you want to display—such as

a code sample in a tutorial—contains HTML
elements, you’ll have to substitute each <
and > around the element name with their
appropriate character entities, &1t; and >
respectively (see “Marking Up Code” for an
example). Otherwise the browser may try to
display those elements. Be sure to validate
your pages to see if you’ve nested HTML ele-
ments in pre when you shouldn’t have (see
“Validating Your Code” in Chapter 20).

The pre element isn’t a shortcut for
avoiding marking up your content with proper
semantics and styling its presentation with
CSS. For instance, if you want to post a news
article you wrote in a word processor, don’t
simply copy and paste it into a pre because
you like the spacing the way it is. Instead,
wrap your content in p (and other relevant text
elements) and write CSS to control the layout
as desired.

pre, like a paragraph, always displays on
a new line by default

Text 131

Specifying Fine Print

According to HTML5, small represents
side comments such as fine print, which
“typically features disclaimers, caveats,
legal restrictions, or copyrights. Small print
is also sometimes used for attribution or for
satisfying licensing requirements.” small is
intended for brief portions of inline text, not
for text spanning multiple paragraphs or
other elements (@) and Q).

To specify fine print:
1. Type <small>.

2. Type the text that represents a legal
disclaimer, note, attribution, and so on.

3. Type </smally.

Be sure to use small only because it fits
your content, not because you want to reduce
the text size, as happens in some browsers

You can always adjust the size with CSS (even
making it larger if you’d like). See “Setting the
Font Size” in Chapter 10 for more information.

small is a common choice for marking
up your page’s copyright notice (.5 and ©}).
It’s meant for short phrases like that, so don’t
wrap it around long legal notices, such as your
Terms of Use or Privacy Policy pages. Those
should be marked up with paragraphs and
other semantics, as necessary.

o The small element denotes brief legal notices
in both instances shown. The second one is a
copyright notice contained in a page-level footer,
a common convention.

<body>

<p>Order now to receive free shipping.
<small>(Some restrictions may apply.)
</small></p>

<footer>
<p><small>© 2011 The Super
Store. All Rights Reserved.
</small></p>
</footer>

</body>
</html>

¥%) Spedilying Fine Prinl - Mucilla Firefusx =] 3]
Bir Edf View History Bockmarks Tk Help

|| Sesifying Fine Print]T| _

Order now to receive free shipping. (Some recteictione may apply)

@ W11 The Super Stare A1 Rights Reserved

0 The small element may render smaller than
normal text in some browsers, but the visual size
is immaterial to whether you should mark up your
content with it.

132 Chapter4

o The same address appears twice, but |

coded them a little differently for demonstration
purposes. Remember that the returns in your code
are always ignored, so both paragraphs display
the same way (:)). Also, you can code br as either

 or <bxr> in HTML5.

<body>

<p>53 North Railway Street

Okotoks, Alberta

Canada T1Q 4H5¢</p>

<p>53 North Railway Street
Okotoks,
Alberta
Canada T1Q 4H5</p>

</body>
</html>

¥) Creating a Line Break - Mozilla Fi =[O x|

s

File Edit ‘Wiew History | Bookmarks Tools Help

| | Creating a Line Break | + | -

53 North Ratlway Street
Olkotols, Alberta
Canada T1Q) 4HS

53 North Railway Street
Olotols, Alberta
Canada T13 4HS

0 Each br element forces the subsequent
content to a new line.

Creating a Line Break

Browsers automatically wrap text accord-
ing to the width of the block or window that
contains content. It’s best to let content
flow like this in most cases, but sometimes
you’ll want to force a line break manually.
You achieve this with the bxr element.

To be sure, using br is a last resort tactic
because it mixes presentation with your
HTML instead of leaving all display control
to your CSS. For instance, never use br

to simulate spacing between paragraphs.
Instead, mark up the two paragraphs with p
elements and define the spacing between
the two with the CSS margin property.

So, when might br be OK? Well, the br ele-
ment is suitable for creating line breaks in
poems, in a street address (@) and @), and
occasionally in other short lines of text that
should appear one after another.

To insert a line break:

Type
 (or
) where the line break
should occur. There is no separate end br
tag because it’'s what’s known as an empty
(or void) element; it lacks content.

Typing br as either
 or
 is
perfectly valid in HTML5.

Styles can help you control the space
between lines in a paragraph (see “Setting
the Line Height” in Chapter 10) and between
the paragraphs themselves (see “Setting the
Margins around an Element” in Chapter 11).

The hCard microformat
(http://microformats.org/wiki/hcard) is “for
representing people, companies, organiza-
tions, and places” in a semantic manner that’s
human- and machine-readable. You could use
it to represent a street address instead of the
provided example

Text 133

http://microformats.org/wiki/hcard

Creating Spans

The span element, like div, has absolutely
no semantic meaning. The difference is
that span is appropriate around a word or
phrase only, whereas div is for blocks of
content (see “Creating Generic Containers”
in Chapter 3).

span is useful when you want to apply any
of the following to a snippet of content for
which HTML doesn’t provide an appropri-

ate semantic element:

m Attributes, like class, dir, id, lang,
title, and more (@) and @)

m Styling with CSS
m Behavior with JavaScript

Because span has no semantic meaning,
use it as a last resort when no other ele-
ment will do.

o In this case, | want to specify the language of
a portion of text, but there isn’t an HTML element
whose semantics are a fit for “La Casa Mila” in the
context of a sentence. The h1 that contains “La
Casa Mila” before the paragraph is appropriate
semantically because the text is the heading

for the content that follows. So for the heading,

| simply added the lang attribute to the h1

rather than wrap a span around the heading text
unnecessarily for that purpose

<body>

<h1 lang="es">La Casa Mila</h1>

<p>Gaudi's work was essentially useful.
La Casa Mila is

an apartment building and real people
 live there.</p>

</body>
</html>

134 Chapter 4

¥)) Creating Spans - Mozilla Firefox Ol x|
File Edit Wiew History Bookmarks Tools Help

k& -

| | | Creating Spans

La Casa Mila

Gaudi's work was essentially useful La Casa Wila
15 an apartment bullding and read peaple live there.

0 The span element has no default styling.

To add spans:
1. Type <span.

2. If desired, type id="name", where name
uniquely identifies the spanned content.

3. If desired, type class="name", where
name is the name of the class that the
spanned content belongs to.

4. If desired, type other attributes (such as
dir, lang, or title) and their values.

5. Type > to complete the start span tag.

6. Create the content you wish to contain
in the span.

7. Type .

A span doesn’t have default format-
ting (), but just as with other HTML elements,
you can apply your own with CSS (see Chap-
ters 10 and 11).

You may apply both a class and id attri-
bute to the same span element, although it’s
more common to apply one or the other, if at
all. The principal difference is that class is for
a group of elements, whereas id is for identi-
fying individual, unique elements on a page.

Microformats often use span to attach
semantic class names to content as a way of
filling the gaps where HTML doesn’t provide a
suitable semantic element. You can learn more
about them at http://microformats.org.

Text 135

http://microformats.org

Other Elements

This section covers other elements that
you can include within your text, but which
typically have fewer occasions to be used
or have limited browser support (or both).

The u element

Like b, i, s, and small, the u element has
been redefined in HTMLS5 to disassociate
it from its past as a non-semantic, presen-
tational element. In those days, the u ele-
ment was for underlining text. Now, it’s for
unarticulated annotations. HTML5 defines
it thus:

The u element represents a span of
text with an unarticulated, though
explicitly rendered, non-textual anno-
tation, such as labeling the text as
being a proper name in Chinese text
(@ Chinese proper name mark), or
labeling the text as being misspelt.

Here is an example of how you could use u
to note misspelled words:

<p>When they <u class="spelling">
recieved</u> the package, they put
it with <u class="spelling">there
</u> other ones with the intention
of opening them all later.</p>

The class is entirely optional, and its

value (which can be whatever you’d like)
doesn’t render with the content to explicitly
indicate a spelling error. But, you could

use it to style misspelled words differently
(though u still renders as underlined text
by default). Or, you could add a title
attribute with a note such as “[sic],” a con-
vention in some languages to indicate a
misspelling.

136 Chapter 4

¥2) Unarticulated Annotations - Moz =14l x|
File Edit Yiew History Bookmarks Tools Help

|| Unarticulated Annotations | + | fed

WWhen they recieved the package, they put it
with there other ones with the mtention of
opeting them all later,

0 Like links, u elements are underlined by
default, which can cause confusion unless you
change one or both with CSS.

Use u only when an element like cite, em,
or mark doesn’t fit your desired semantics.
Also, it’s best to change its styling if u text
will be confused with linked text, which is

also underlined by default @.

The wbx element

HTML5 introduces a cousin of br called
wbx. It represents “a line break opportu-
nity.” Use it in between words or letters in

a long, unbroken phrase (or, say, a URL) to
indicate where it could wrap if necessary
to fit the text in the available space in a
readable fashion. So, unlike bx, wbxr doesn’t
force a wrap, it just lets the browser know
where it can force a line break if needed.

Here are a couple of examples:

<p>They liked to say,

"FriendlyFleasandFireFlies<wbr />
FriendlyFleasandFireFlies<wbr />
FriendlyFleasandFireFlies<wbr />
" as fast as they could over and
over.</p>

<p>His favorite site is this<wbr
/>is<wbr />a<wbr />really<wbr
/>really<wbr />longurl.com.</p>

You can type wbr as either <wbr /> or
<wbr>. As you might have guessed, you
won'’t find many occasions to use wbr.
Additionally, browser support is incon-
sistent as of this writing. Although wbr
works in current versions of Chrome and
Firefox, Internet Explorer and Opera simply
ignore it.

Text 137

The ruby, rp, and rt elements

A ruby annotation is a convention in East
Asian languages, such as Chinese and Jap-
anese, typically used to show the pronun-
ciation of lesser-known characters. These
small annotative characters appear either
above or to the right of the characters they
annotate. They are often called simply ruby
or rubi, and the Japanese ruby characters
are known as furigana.

The ruby element, as well as its rt and rp
child elements, is HTML5’s mechanism for
adding them to your content. rt speci-

fies the ruby characters that annotate the
base characters. The optional rp element
allows you to display parentheses around
the ruby text in browsers that don’t support
ruby.

The following example demonstrates this
structure with English placeholder copy to
help you understand the arrangement of
information both in the code and in a sup-
porting browser @. The area for ruby text
is highlighted:

<ruby>

base <rp>(</rp><rt>ruby chars
</rt><xpy)</xp>

base <rp>(</rp><rt>ruby chars
</rt><xpy)</rp>

</ruby>

Now, a real-world example with the two
Chinese base characters for “Beijing,” and
their accompanying ruby characters @:

<ruby>
It <xp>(</xp><rt>T\"</rt><xp>)
</rp>
W <rp>(</rp><rt>U—L</rt><xp>)
</xp>
</ruby>

rubry chiars by chars

base base

0 A supporting browser will display the ruby text
above the base (or possibly on the side), without
parentheses.

ey ™=, ¥

it =

G Now, the ruby markup for “Beijing” as seen in a
supporting browser.

138 Chapter 4

BT NITEY — L)

0 A browser that supports ruby ignores the rp
parentheses and just presents the rt content
and (&). However, a browser that doesn’t support
ruby displays the rt content in parentheses, as
seen here.

You can see how important the parenthe-
ses are for browsers that don’t support
ruby @. Without them, the base and ruby
text would run together, clouding the
message.

At the time of this writing, only Safari

5+, Chrome 11+, and all versions of Internet
Explorer have basic ruby support (all the more
reason to use rp in your markup). The HTML
Ruby Firefox add-on (https://addons.mozilla
.org/en-US/firefox/addon/6812) provides sup-
port for Firefox in the meantime.

You can learn more about ruby char-
acters at http://en.wikipedia.org/wiki/
Ruby_character.

The bdi and bdo elements

If your HTML pages ever mix left-to-right
characters (like Latin characters in most
languages) and right-to-left characters (like
characters in Arabic or Hebrew), the bdi
and bdo elements may be of interest.

But, first, a little backstory. The base
directionality of your content defaults to
left-to-right unless you set the dir attribute
on the html element to rtl. For instance,
<html dir="rtl" lang="he"> specifies the
base directionality of your content is right-
to-left and the base language is Hebrew.

Just as I've done with lang in several
examples throughout the book, you

may also set dir on elements within the
page when the content deviates from

the page’s base setting. So, if the base
were set to English (<html lang="en">)
and you wanted to include a paragraph in
Hebrew, you’d mark it up as <p dir="rtl"
lang="he">...</p>.

Text 139

http://en.wikipedia.org/wiki/Ruby_character
http://en.wikipedia.org/wiki/Ruby_character
https://addons.mozilla.org/en-US/firefox/addon/6812
https://addons.mozilla.org/en-US/firefox/addon/6812

With those settings in place, the content will
display in the desired directionality most

of the time; Unicode's bidirectional (“bidi”)
algorithm takes care of figuring it out.

The bdo (“bidirectional override”) element
is for those occasions when the algorithm
doesn’t display the content as intended
and you need to override it. Typically,
that’s the case when the content in the
HTML source is in visual order instead of
logical order.

Visual order is just what it sounds like—
the HTML source code contentis in the
same order in which you want it displayed.
Logical order is the opposite for a right-to-
left language like Hebrew; the first charac-
ter going right to left is typed first, then the
second character (in other words, the one
to the left of it), and so on.

In line with best practices, Unicode expects
bidirectional text in logical order. So, if

it's visual instead, the algorithm will still
reverse the characters, displaying them
opposite of what is intended. If you aren't
able to change the text in the HTML source
to logical order (for instance, maybe it’'s
coming from a database or a feed), your
only recourse is to wrap it in a bdo.

To use bdo, you must include the dir attri-
bute and set it to either 1tr (left-to-right)

or rtl (right-to-left) to specify the direction
you want. Continuing our earlier example
of a Hebrew paragraph within an otherwise
English page, you would type, <p lang=
"he"><bdo dir="rt1">...</bdo></p>.

bdo is appropriate for phrases or sen-
tences within a paragraph. You wouldn’t
wrap it around several paragraphs.

140 Chapter 4

The bdi element, new in HTMLD5, is for
cases when the content’s directionality is
unknown. You don’t have to include the
dir attribute because it’s set to auto by
default. HTML5 provides the following
example, which I've modified slightly:

This element is especially use-
ful when embedding user-gen-
erated content with an unknown
directionality.

In this example, usernames are
shown along with the number of
posts that the user has submitted.

If the bdi element were not used,
the username of the Arabic user
would end up confusing the text (the
bidirectional algorithm would put the
colon and the number “3” next to the
word “User” rather than next to the
word “posts”).

User <bdi>jcranmer</bdis:
12 posts.</1li>

<lis>User <bdi>hober</bdi>:
5 posts.

<lisUser <bdi>lslo</bdis:
3 posts.</1i>

If you want to learn more on the subject
of incorporating right-to-left languages,

| recommend reading the W3C'’s article
“Creating HTML Pages in Arabic, Hebrew,
and Other Right-to-Left Scripts” (www.w3.org/
International/tutorials/bidi-xhtml/).

Text 141

www.w3.org/International/tutorials/bidi-xhtml/
www.w3.org/International/tutorials/bidi-xhtml/

The meter element

The meter element is another that is new
thanks to HTML5. You can use it to indicate
a fractional value or a measurement within
a known range. Or, in plain language, it’s
the type of gauge you use for the likes of
voting results (for example, “30% Smith,
37% Garcia, 33% Clark”), the number of
tickets sold (for example, “811 out of 850”),
numerical test grades, and disk usage.

HTMLS5 suggests browsers could render

a meter not unlike a thermometer on its
side—a horizontal bar with the measured
value colored differently than the maximum
value (unless they're the same, of course).
Chrome, one of the few browsers that sup-
ports meter so far, does just that @. For
non-supporting browsers, you can style
meter to some extent with CSS or enhance
it further with JavaScript.

Although it’s not required, it’s best to
include text inside meter that reflects the
current measurement for non-supporting
browsers to display @.

Here are some meter examples (as seenin

@ and ©):

<p>Project completion status: <meter
value="0.80">80% completed</meter>
</p>

<p>Car brake pad wear: <meter low=
"0.25" high="0.75" optimum="0"
value="0.21">21% worn</metexr></p>

<p>Miles walked during half-marathon:
<meter min="0" max="13.1" value="4.5"
title="Miles">4.5</metexr></p>

meter doesn’t have defined units of mea-

sure, but you can use the title attribute to
specify text of your choosing, as in the last
example. Chrome displays it as a tooltip ©@.

O Providing a Gauge with meter

€ C f O bruceontheloose.com/htmlcss/ 7F ;.‘EI

Project completion status: sy
Car brake pad wear: 20

Miles wallced during half-marathon: B

G A browser like Chrome that supports meter
displays the gauge automatically, coloring it in
based on the attribute values. It doesn’t display
the text in between <meter> and </meter>.

=10l x|

¥) Providing a Gauge with meter=|
File Edit Wiew History Bookmarks Tools Help

| | | Providing a Gauge with meter | +

Project completion status: 80% completed
Car brake pad wear: 21% worn

Idiles walked during half-marathen: 4.5

O Most browsers, like Firefox, don’t support
meter, so instead of a colored bar, they display
the text content inside the meter element. You can
change the look with CSS.

142 Chapter 4

meter supports several attributes. The
value attribute is the only one that’s required.
min and max default to O and 1.0, respectively,
if omitted. The low, high, and optimum attri-
butes work together to split the range into low,
medium, and high segments. optimum indi-
cates the optimum position within the range,
such as “0 brake pad wear” in one of the
examples. Set optimum in between if neither a
low nor a high value is optimal.

At the time of this writing, meter is sup-
ported only by Chrome 11+ and Opera 11+. This
partially explains why you don’t yet see it in
the wild too much. Feel free to use it, but just
understand that most browsers will render the
meter text rather than the visual gauge by
default

The style of the gauge that each support-
ing browser displays may vary.

Some people have experimented with
styling meter CSS for both supporting and
non-supporting browsers. Search online for
“style HTML5 meter with CSS” to see some of
the results (note that some use JavaScript).

meter is not for marking up general
measurements, such as height, weight, dis-
tance, or circumference, that have no known
range. For example, you cannot do this: <p>I
walked <meter value="4.5">4.5</meter>
miles yesterday.</p>.

Be sure not to mix up your uses of the
meter and progress elements.

Text 143

The progress element

The progress element is yet another of
the new elements in HTML5. You use it for
a progress bar, like the kind you might see
in a Web application to indicate progress
while it is saving or loading a large amount
of data.

As with meter, supporting browsers auto-
matically display a progress bar based on
the values of the attributes @. And again
like meter, it’'s usually best to include text
(for example, “0% saved,” as shown in the
example) inside progress to reflect the
current progress for older browsers to dis-
play @, even though it’s not required.

Here’s an example:

<p>Please wait while we save your
data. Current progress: <progress
max="100" value="0">0% saved
</progress></p>

A full discussion of progress is beyond
the scope of this book since typically you
would dynamically update both the value
attribute and the inner text with JavaScript
as the task progresses (for example, to
indicate that it's 37% completed). The
visual results are the same whether you
do that with JavaScript or hard-code it in
the HTML, that is, <progress max="100"
value="37">37% saved</progress> @. Of
course, non-supporting browsers would
display it similarly to €).

L C M O bruceontheloose.com il mikes ol apiter-0d/ 7 *ﬂ

Pleaze wait while we gave your data Current progress:

@ A browser like Chrome that supports progress
displays the progress bar automatically, coloring it
in based on the value. It doesn’t display the text in
between <progress> and </progress>. The value
attribute is set to 0 in this example, so the whole
bar is the same color.

) Indicating Progress - Mozilla Firefox -1ol x|

Gle Edt Yiew History Bookmarks imfs__l:lab
‘_mmcatlngwagress i+l

Flease wait while we save your data Current progress: 0% saved

0 Firefox doesn’t support progress, so instead of
a colored bar, it displays the text content inside the
element. You can change the look with CSS.

* C M O bruceontheoosscom ik eampbes/ceple o) gy | R

Flease wait whie we save your data Cusrent progress [N

0 The progress bar in Chrome when the value
attribute is set to 37 programmatically with
JavaScript (or directly in the HTML), assuming
max="100".

144 Chapter 4

The progress element supports three
attributes, all of which are optional: max,
value, and form. The max attribute specifies
the total amount of work for the task and must
be greater than 0. value is the amount com-
pleted relative to the task. Assign the form
attribute to the id of a form element on the
page if you want to associate the progress
element with a form it isn’t nested within.

Here’s a small taste of how to modify

a progress element with JavaScript. Let’s
assume the bar had been coded with an id of
your choosing, like this:

<progress max="100" value="0"
id="progressBar">0% saved</progress>

JavaScript such as the following would give
you access to the element:

var bar = document.getElementById
('progressBar');

Then you could get or set the value via bar.
value as needed. For example, bar.value =
37, would set it.

The progress element has pretty

solid support among modern browsers as of
this writing: Chrome 11+, Firefox 6+, Internet
Explorer 10 (available only as a Platform Pre-
view at the time of this writing), and Opera 11+.
Safari doesn’t support it.

The style of the progress bar that
each supporting browser displays may vary,
though you can style it yourself to some
extent with CSS.

Text 145

This page intentionally left blank

Images

Creating images for the Web is a bit dif-
ferent from creating images for output on
paper. Although the basic characteristics
of Web images and printable images are
the same, six main factors distinguish
them: format, color, size/resolution, speed,
transparency, and animation. This chapter
will discuss the important aspects of each
of these six factors and will explain how
to use that knowledge to create the most
effective images for your Web site.

Once you've created your images, we’ll go
on to insert them on your Web page.

In This Chapter

About Images for the Web

Getting Images

Choosing an Image Editor

Saving Your Images

Inserting Images on a Page

Offering Alternate Text

Specifying Image Size

Scaling Images with the Browser
Scaling Images with an Image Editor

Adding Icons for Your Web Site

148
152
153
154
156
157
158
160
161
162

About Images
for the Web

Let’s look at the six factors you should
keep in mind as you create Web images.

Format

People who print images on paper don’t
have to worry about what their readers will
use to look at the images. You do. The Web
is accessed every day by millions of Macs,
Windows-based PCs, phones, tablets, and
other kinds of devices. The graphics you
use in your Web page should be in a for-
mat that each of these operating systems
can recognize. Presently, the three most
widely used formats on the Web are GIF,
PNG, and JPEG. Current browsers can view
all three image formats.

You want to choose a format that gives you
the best quality with the smallest file size.

The JPEG format is good for color photo-
graphs because it handles large amounts
of color and it compresses well, so your file
sizes will be small @. Itis a lossy format,
so you lose some of the image’s original
information when you save it as a JPEG,
but usually this is a worthy compromise,
because your pages load quickly. We’ll talk
more about this in the “Speed” section.

The PNG and GIF formats are often used
when you’re saving files like logos with
large amounts of solid colors and patterns
or when you need transparency. The PNG
and GIF formats compress areas of con-
tinuous colors or repetitive patterns better
than the JPEG format does. PNG is often
the better choice, because it has a better
compression algorithm for smaller file sizes
and it has superior transparency support
(alpha transparency) ©.

0 Full-color photographs should be saved in the
JPEG or PNG-24 format.

Training

Podcasts

0 Logotypes and other computer-generated
images or images with few colors are compressed
efficiently with ZIP and thus are often saved in
PNG-8 format.

148 Chapter 5

Size Matters

| I8! Size Matters L+l =

@ This image is 2048 pixels wide. In Photoshop,
it has an output resolution of 256 ppi and only
measures 6 x 8 inches. Here in Firefox, its resolu-
tion is determined by the visitor’'s monitor—about
72 ppi—which means the picture is 28 inches wide!

Size Matters

At a Tibetan Buddiist monastery in northem India, monks beautitully created
a walkway of stones.

=

0 This image is 500 pixels wide, which is about
half the width of a browser window that is 1024
pixels wide.

Color

Most computer monitors can display mil-
lions of colors, but this wasn’t always the
case. Some image formats have a limited
color palette. GIF and PNG-8 images can
have only 256 colors, which is often fine
for logos and icons.

Photographs and complex illustrations
should be saved in the JPEG or PNG-24
format, because they accommodate more
colors in a single image.

Size and resolution

Digital images are measured in pixels.

A 3-megapixel digital camera can take
pictures that are 2048 pixels wide by 1536
pixels high. How big is that? It depends.

If you print the image to a printer at 256
ppi (pixels per inch), it will measure 8 by 6
inches. But if you’re using that page on the
Web, the image’s size will depend on the
resolution of your visitor’s monitor, which is
more likely to be around 86 ppi (and might
be as low as 72 or as high as 100 or so), and
thus the image could display as big as 28 x
21inches (about 75 x 54 cm). Too big @.

Perhaps a better way to think of image size
is with respect to the average Web page.
Since monitors with a resolution of 1024
pixels wide by 768 pixels high were the
standard for so long, Web page designers
got used to keeping their pages around
960 pixels wide, so that viewers could see
the entire contents of the page without
scrolling horizontally.

While it’s true that there are more and
more people who have bigger monitors
(these days, more than 85 percent are
larger than 1024 x 768), it doesn’t neces-
sarily follow that folks will fill up those
bigger monitors with a single browser
window. Aside from having other pro-
grams to consult (or even other browser

Images 149

windows), it’s cumbersome to read text in
a browser that’s too wide. Still, designers
have tended to widen their designs and
use flexible-width designs that expand and
contract with a visitor’'s browser window.

Also, the use of smartphones and tablets
is rapidly increasing, so you should always
consider screen size and limited download
speeds.

Note that resolution can mean one of two
quite distinct concepts: the actual number
of pixels on a monitor or in an image (say,
640 x 480) and the number of pixels in an
inch of that monitor or image (say, 72 or
86 ppi). Regardless, the higher the resolu-
tion, the more pixels. On paper, pixels can
add details or size. Onscreen, more pixels
always translates to a bigger image.

Speed

Another difference between Web images
and printed images is that your visitors
have to wait for Web images to download.
(Imagine waiting for pictures to appear in
your morning paperl)

How can you keep download time to a
minimum? The easiest way is to use small
images. The larger an image’s file size, the
longer it takes to appear before your visi-
tors’ eyes.

The second way to speed up download
time is by compressing the image. JPEG is
great at dramatically reducing an image’s
file size, but JPEG has two main disadvan-
tages. First, its compression information
takes up a lot of space and is simply not
worth it for very small images. Second,

it is lossy compression—permanently
eliminating details in order to save space.
Uncompressing the image will not restore
the lost data. If you plan to edit the image
in the future, you should save a copy in an
uncompressed format (for example, PSD or

150 Chapter 5

TIFF) and only save it as a JPEG after you
have made your final edits.

PNG and GIF are lossless formats, so they
can compress your images without losing
quality. Images that have large areas of a
single color, like logos, rendered text, and
illustrations, are best for this. PNG com-
presses better than GIF.

Transparency

Transparency is important for two reasons.
First, you can use it to create complex
layouts by making one image move behind
another. Second, you can take advantage
of transparency to give an image a non-
rectangular outline, adding visual interest
to your pages. Both PNG and GIF allow
transparency; JPEG does not.

In the GIF format, a pixel can be transpar-
ent or not. PNG supports alpha transpar-
ency, a method of supporting both partial
and full transparency. This means that
images with complex transparent back-
grounds often look better as a PNG than as
a GIF, because the edges appear smooth
instead of jagged.

Animation

One thing you won’t be seeing on paper
any time soon is moving images. On

the Web, they’re everywhere. Animated

images can be saved as GIFs but not as

JPEGSs or PNGs.

Animation inside an image is becoming
increasingly rare. Animation is generally
created using Flash, CSS Animations, and
JavaScript. In recent years, the use of Flash
for animations on the Web has declined
because of iOS’s lack of support for Flash
and the increasing capability of JavaScript
and CSS.

Images 151

Getting Images

So how do you get an image that you

can use for your Web page? There are
several ways. You can buy or download
ready-made images, digitize photographs
or hand-drawn images with a scanner,
use a digital camera, or draw images from
scratch in an image editing program like
Adobe Photoshop. Once you’ve got them
in your computer, you can adapt them for
use on the Web.

To get images:

m You can use Google to find images
on the Web by clicking the Images
link above the Search box and enter-
ing criteria as usual. See the “Creative
Commons Licenses” sidebar for more
information on copyrights for those
images.

m Generally, even free images found on
the Web are restricted in one form or
another (see the “Creative Commons
Licenses” sidebar). Images you buy can
usually be used for any purpose (except
reselling the images themselves). Read
any disclaimers or licenses carefully.

m Many companies sell stock photogra-
phy and images for a very reasonable
price. They often have several versions
of each image for different purposes
and resolutions.

m Scanners and digital cameras are popu-
lar and effective ways to create your
own images.

Creative Commons Licenses

Creative Commons (www.creativecom
mons.org) is a non-profit organization
that has developed a system of copy-
right templates that let artists share their
work in specified ways without giving
up all rights over their work. Web site
designers, musicians, and photographers
are some of the many artists who use
Creative Commons licenses to get their
work out in the marketplace without fear
that it will be used in a way they don’t
agree with.

Flickr, the popular photo-sharing Web
application (www.flickr.com), asks its
users to designate a Creative Commons
license for each photo they upload.
Flickr then lets visitors search for photos
according to the licenses assigned to
them. It can be a great place to find pho-
tos for your Web site.

You can also use Google to restrict
searches based on usage rights. (Click
Advanced Search and then choose the
desired option from the Usage Rights
drop-down menu.)

152 Chapter 5

www.flickr.com
www.creativecommons.org
www.creativecommons.org

Choosing an
Image Editor

There are many, many different software
programs that you can use to create and
save images for the Web. Most modern
image editors have special tools for creat-
ing Web images, which take into account
the factors discussed earlier in this chapter.

The industry standard is no doubt Photo-
shop, along with its cousin, Abobe Fire-
works (www.adobe.com). Fireworks is a
very powerful program in its own right.
Both are available for Macintosh and Win-
dows. | have used these two programs to
illustrate a few techniques in this chapter.

Let me stress, however, that the basic strat-
egies for optimizing images for the Web
are the same regardless of the software
you choose. The command names may be
slightly different, and there may be more
or fewer steps, but the ideas remain the
same.

There are many alternatives to Photo-
shop, including Paint.NET (for Windows,
www.getpaint.net) and Acorn or Pixelmator
(for the Mac, www.pixelmator.com). Also,
online editors such as Photoshop.com and
Aviary.com are becoming more and more
capable. Feel free to use whatever pro-
gram you’re most comfortable with.

Images 153

www.adobe.com
www.getpaint.net
www.pixelmator.com

Saving Your Images

Now that you have your images created,
it’s time to save them. This process is a
balancing act between the visual quality of
the image and its file size.

You can use trial versions of Photoshop
and Fireworks if you don’t have the soft-
ware installed on your computer.

Adobe Photoshop

Photoshop offers the Save for Web &
Devices command on the File menu. It lets
you visually compare the original image
with up to three versions that you can opti-
mize while keeping an eye on any resulting
savings in file size and download time.

To use Photoshop’s Save for
Web & Devices command:

1. Open Photoshop and create your
image. Or open an existing image, and
prepare it for publishing by cropping,
sizing, and editing it.

2. Choose File > Save for Web & Devices.
The Save For Web & Devices dialog
appears.

3. Click the 2-Up tab to see one optimized
version, or click the 4-Up tab to see
three.

4. Click an optimized version, if necessary.
5. Choose the desired format.

In general, images that have been cre-
ated on a computer, including logos,
banners, line art, text, and any graphic
with large areas of a single color and
sharp detail, should be saved in PNG-8
or GIF format @.

Images with continuous tones, like
photographs, should be saved in either
JPEG or PNG-24 format ©.

Q The Save for Web & Devices dialog, which
shows the original image (upper left) and three
possible compressed versions. This image has

a lot of flat color, as well as text, that should be
kept sharp. Note that the PNG-8 format (lower left)
compresses the image the best, to just under 10K.
PNG-24, with more colors available, is 35K. JPEG
at high quality is huge. If you adjust the JPEG to
medium quality (not shown), it’s still big and ugly.

a o, o A v (0

0 The JPEG (lower left) offers good image

quality with the smallest file size (63K). The PNG-8
compression leaves banding in the photograph
(lower right), and the file size (114K) is almost twice
the size of the JPEG. The PNG-24 (upper right)
offers a high-quality image but at a much larger file
size (322K).

154 Chapter 5

Original & breview | 2=p [a-Up|

e NYE~ I N\~

Oviginal Untished - IFEG (Documant, o 100 quality

B6.05K
13 sac @56kEY

2 T

) .DIHI DIHI

umee, . 0N dithar e
Aduptive palerie 37,
12 enlory B

0 Notice that the PNG-8 image (lower left) has
a slightly smaller file size than its Photoshop
counterpart. The other two formats, JPEG (upper
right) and PNG-24 (lower right), are larger.

PHG (D) s
313,65
50 sec B3EkBEs

IPEG (Docwmant, . 50 quality P (D - 0% dnher

2709 B5.84K, © T Adsenive pene
4 ver @56kbE 10 vec @5Bkbps 238 colon

oo GD0XA50 100%.

0 Fireworks optimizes this image significantly
better, with smaller file sizes for JPEG (lower left),
PNG-8 (lower right), and PNG-24 (upper right). The
JPEG and PNG-8 file sizes are half of Photoshop!

6. Adjust the additional settings that
appear until you get the smallest file
possible with an acceptable quality.

7. Click Save. Choose a directory, and
name the new file. It will automatically
carry the extension of the selected for-
mat (and thus normally will not replace
the original image).

Adobe Fireworks

Photoshop is designed for a variety of uses,
whereas Fireworks is designed for creat-
ing images for the Web (@ and @). It used
to optimize PNGs with smaller file sizes
than Photoshop, but the gap has closed.
Fireworks offers an extra export option for
higher-quality PNGs: the PNG-32 format.

Remember that your main objective is to
get the smallest file size possible while main-
taining acceptable image quality.

Images should be created in RGB, not
CMYK (which is for print).

If you’re not sure which format to
choose, compare two optimizations and see
which format compresses better.

PNG-24 is a powerful lossless format
that can be used for both computer-generated
and “natural” color images. It is often better
than PNG-8 but not quite as good as JPEG.

If you have an image with both types of
content, you can slice it into chunks, compress
them separately, and reassemble them with
CSS; or just use a single format and let it do
its best.

The Save for Web & Devices command
creates a new image and leaves the original
image intact—unless you save the new image
with the same name and extension, and in the
same folder, as the old.

Only an image’s visible layers are saved
in the optimized version.

Images 155

Inserting Images
on a Page

You can place all kinds of images on your
Web page, from logos to photographs.
Images placed as described here appear
automatically when the visitor jumps to
your page, as long as the browser is set up
to view them.

To insert an image on a page:

1. Place the cursor in the HTML code
where you want the image to appear.

2. Type <img src="image.url", where
image.url indicates the location of the
image file on the server.

3. Type a space and then the final />.

Images must be uploaded to the server
before visitors will be able to see them.

Don’t expect your visitors to wait very
long for your page to load and view. Test it
(keeping in mind that you may have a faster
connection than your visitors). If you can’t
wait, they won’t either. One alternative is to
create miniatures of large images and let visi-
tors choose to view the larger images through
a link.

There is a deprecated border attribute
(boxrder="n", where n is the width in pix-
els) that adds or eliminates a border around
images, especially the automatic border that
appears around images used in links. Better
yet, you can use styles to control this and all

other aspects of images.

o The URL for this image, since it contains only
the file name and no path, indicates that the image
is located in the same folder as this Web page.

<body>
<h2>Barcelona's Market</h2>

<p>This first picture shows one of the
fruit stands in the Mercat de la Boqueria,
the central market that is just off the
Rambles. It's an incredible place, full
of every kind of fruit, meat, fish, or
whatever you might happen to need. It
took me a long time to get up the nerve
to actually take a picture there. You
might say I'm kind of a chicken, but
since I lived there, it was just sort
of strange. Do you take pictures of your
supermarket?</p>

</body>
</html>

/% Barcelona’s Market - Windows Internet E... [[[B][%]
AT [an 3|14 >
Fie Cdt View Favortes Tools Help

g Favorites. | 8 Barcslona’s Makst 4

Barcelona's Market

0 Images are
aligned to the
left side of the
page to match
the alignment
of the text. You
can change
the alignment
or wrap text
around an
image by using
CSS properties
such as float
(see “Making

ik b Elements Float”
of fruit, mear, fish, or whatever vou might happen & in Chapter 11)

e of the frait stends in the
al market that is just
ace, full of every

156 Chapter 5

o While the alternate text can theoretically be as
long as you like, most browsers don’t automatically
wrap long lines. Therefore, it's a good idea to keep
it under 50 characters or so.

<body>
<h2>Barcelona's Market</h2>

<img src="cornermarket.jpg" alt="Fruit Stand
in Market" />

<p>This first picture shows one of the
fruit stands in the Mercat de la Boqueria,
the central market that is just off the
Rambles. It's an incredible place, full
of every kind of fruit, meat, fish, or
whatever you might happen to need. It
took me a long time to get up the nerve
to actually take a picture there. You
might say I'm kind of a chicken, but
since I lived there, it was just sort
of strange. Do you take pictures of your
supermarket?</p>

</body>
</html>

¥4 x| o

File Edit ‘View Favorites Tools Help

|2l

¢ Favorites | @ Barcelona's Market it

3

Barcelona's Market

| Fruit Stand in Market

This first picture shows one of the fruit stands in the
Mercat de la Boqgueria, the central market that is just
off the Rambles. It's an incredible place, full of every v

0 In Internet Explorer, the alternate text appears
next to a small box with a red x. In other browsers,
the text appears alone.

Offering
Alternate Text

While images are great on a big screen
with a fast connection, they can be less
useful—and downright problematic—on
handhelds, on phones, with slow connec-
tions, or for the blind. You can add descrip-
tive text that will appear if the image, for
whatever reason, does not appear. That
same text will also be read by screen
readers.

To offer alternate text when
images don’t appear:

1. Within the img tag, after the sxc attri-
bute and value, type alt=".

2. Type the text that should appear if, for
some reason, the image itself does not

(@ and O).
3. Type ".

The alt attribute is required for all img
elements in HTML5.

Screen readers such as JAWS can read
the alternate text out loud so that blind or
visually impaired visitors can get an idea of
what the image is about.

If the image is not relevant to nonvisual
users, the W3C suggests you use alt="".
Images with a caption or nearby text that
accurately describes the image can have blank

alt text.

Images 157

Specifying Image Size

Sometimes when you load a Web page,
you see the text first, and then when the
images load a few moments later, the text
jumps around to accommodate them. This
happens because the size of the image is
not specified in the HTML.

When a browser gets to the HTML code
for an image, it must load the image to see
how big it is and how much space must be
reserved for it. If you specify the image’s
dimensions, the browser will reserve the
space and can fill in the text around the
image as the image loads, so that your lay-
out will remain stable as your page loads.

You can use either your browser or your
image editing program to get the exact
dimensions of your image.

Browsers will also stretch or shrink an
image to fit the size you've specified in
your HTML (or CSS). You can use this to
your advantage if you want to use the
same image file in different contexts, but
be careful to update your code if you edit
the image file and change its dimensions.

To find the size of your image
with your browser:

1. Right-click the image. A contextual pop-
up menu appears).

2. Choose Properties or View Image Info
(depending on your browser) 3. A box
appears that shows the dimensions of
your image in pixels ©@.

Barcelona's Market

View Image
Copy Image
Copy Image Location

Save Image As...
Send Image...

Set As Decktop Background...
View Image Info

Web Developer > B

5S¢ Inspect Clement

0 Right-click the image in the browser to make
the contextual pop-up menu appear. The browser
will offer a way to inspect the image, show its
properties, or get the dimensions.

Type: JPEC Image
Size: Unknown {not cached)
Dimensions: 300px x 399px

Associated Text: Fruit 5tand in Market

0 A box appears (its appearance varies
depending on the browser you’re using) that
shows the size of the image in pixels.

RGB/8#)

0O O O < cornermarket.jpg @ 100% (
o - .'[.

Tilz Width: 300 pixels
Tile Height- 399 pixels [

Image Width: 1 tile k

Image Height: 1 tile

@

G In Photoshop, click the document info bar at
the bottom of a document window to see the
image’s properties. (If the document info bar
doesn’t show, make the window a little wider.)

158 Chapter 5

0 If you specify the exact height and width in
pixels, the browser won’t have to spend time doing
it and will display the image more quickly.

<body>
<h2>Barcelona's Market</h2>

<img src="cornermarket2.jpg" alt="Fruit Stamd
in Market" width="300" height="399" />

<p>This first picture shows one of the
fruit stands in the Mercat de la Boqueria,
the central market that is just off the
Rambles. It's an incredible place, full
of every kind of fruit, meat, fish, or
whatever you might happen to need. It
took me a long time to get up the nerve
to actually take a picture there. You
might say I'm kind of a chicken, but
since I lived there, it was just sort
of strange. Do you take pictures of your
supermarket?</p>

</body>
</html>

cornermarket.jpg (PEG lmage, 300x399 pixels)

/B8 cornermarketjpg UPEG Image, ... | Ptk

G If you open an image directly in a browser
(this is Firefox for Windows), its dimensions are
displayed in the title bar.

To find the size of your
image with Photoshop:

1. Open the image in Photoshop.

2. Make the document window wide
enough so that the document info bar
is visible in the lower-left border of the
window.

3. Click the document info bar. A small
box appears with information about the
image, including its size @.

To specify the size of
your image in HTML:

1. Determine the size of your image using
one of the techniques described in “To
find the size of your image with your
browser” or “To find the size of your
image with Photoshop.”

2. Within the img tag, after the sxc attri-
bute, type width="x" height="y", using
the values you found in step 1to specify
the values for x and y (the width and
height of your image) in pixels.

The width and height attributes don’t
necessarily have to reflect the actual size of
the image.

If you have several images that are the
same size, you can set their height and width
all at the same time with styles.

You can also find the size of an image
in a browser by opening the image in its own
window. The size is shown in the title bar G

In Photoshop or Fireworks, you can
select the entire image and then view the Info
panel for the image’s dimensions.

Images 159

Scaling Images
with the Browser

You can change the display size of an image
just by specifying a new height and width in
pixels (@ through @). It is best, however, to
display images at their original size.

The methods browsers use to scale images
aren’t as advanced as those of Photoshop
or other image editors, so test the results.

To reduce load time, you can scale up your
image by adjusting the height and width

in HTML or CSS. But be careful—if you
enlarge the image too much, it might look
grainy and ugly.

To scale an image with the browser:

1. Type <img src="image.url", where
image.url is the location on the server
of the image.

2. Type width="x" height="y" where x
and y are the desired width and height,
respectively, in pixels, of your image.

3. Add any other image attributes as
desired, and then type the final /5.

You can also use a percentage value in
step 2, with respect to the browser window
(not to the original image size).

Using the width and height attributes
is a quick and dirty way to change how the
image displays on a Web page. However, since
the file itself is not changed, the visitor always
gets cheated. Reduced images take longer

to view than images that are really that size;
enlarged images appear grainy. A better solu-
tion is to use your image editor to change the
size of the image.

You can set just the width or just the
height and have the browser adjust the other
value proportionally.

Stupas
O Stupas Ll b

4)r e GotoaWebSit v || 3¢ | (2~ Coogle Q) | -

Stupas

0 At its original size of 440 by 341 pixels, the
image is way too big on the page.

0 Adjust the height and width attributes, and be
sure to keep the aspect ratio the same. In this case,
we divided both the height and width by two.

<h1>Stupas</h1>

<img src="stupa.jpg" alt="Two Stupas"
width="220" height="170" />

<p>These stupas in Yunnan, China, are
Buddhist monuments used as a place for
worship.</p>

8ano Stupas
Stupas (B -

iC
OD|C) IE— T G R 8
Stupas

These smpas in Yunnan, China, are Buddhist monuments used as a
place for worship.

®

G The image appears at half its original size. It's
important to note, however, that it takes the same
time to load as before. After all, it's the same file.

160 Chapter 5

Q The original photograph, snapped with my
digital camera’s default settings, measured
2048 by 1536 pixels, which (besides being big
enough for almost four browsers) weighed in at
a whopping 211.3K when compressed as a high-
quality JPEG.

a .

- |

0 Type the new width, 400 pixels, in the W
field, and click Apply. The reduced image will fit
properly on the page and will take only 1 second
to download at 768Kbps (or less with a faster
connection).

Scaling Images with
an Image Editor

Most images are too big for a Web page.
While an image destined for print might
measure 1800 pixels across (to print at
300 dpi and be six inches wide), images
for Web pages should rarely be wider than
600 pixels, and often more like 200.

When you need images to be larger, find

a larger original image and scale it down
with an image editor. When that is not an
option, scaling an image up with an image
editor looks better than using the browser.
But it will increase the image’s file size and
your page’s load time.

To scale an image with Photoshop:

1. In the lower-right portion of the Save
For Web & Devices window, click the W
(Width) box or the H (Height) box in the
Image Size section 0.

2. Enter a new width or height in pixels, or
a percentage, and then press the Tab
key for the image to resize ©.

3. You can continue to adjust the size up
or down until you’re satisfied. The image
is not resampled until you press Save.

You can also change the size of an
image before you Save for Web & Devices

by using the Image Size command under the
Image menu item. Remember that the Resolu-
tion box is irrelevant (it refers to the output
resolution, which is determined on the Web
not by you or Photoshop, but rather by the
visitor’s monitor). Instead, base the size on the
number of pixels in the image. You will have
to select the Resample Image box to get it to
change the image’s size (as opposed to its
output resolution).

Another great way to reduce the size of
an image is to crop out unwanted areas.

Images 161

Adding Icons for
Your Web Site

The small icon (associated with a Web site)
that you see in address bars, tabs, and
bookmarks is known as a favicon, which is
short for favorites icon.

Apple asks for larger icons for the home
screens of their devices (iPhone, iPod
touch, and iPad); they recommend the size
be 114 pixels x 114 pixels. Don’t worry about
adding the fancy rounded corners, drop
shadow, and reflective shine; the device’s
operating system will do that for you. The
Android operating system supports these
icons too.

To add an icon for your Web site:

1. Create a 16 pixel by 16 pixel image, and
save it in the ICO format @. You can
also save it in the PNG and GIF formats.

2. Create a 114 pixel by 114 pixel image
for touch devices, and save in the PNG
format.

3. Inthe head section of your HTML5
document, type <link rel="shortcut
icon" href="favicon.ico" />, where
favicon.ico is the name and loca-
tion of your icon on your server. If your
image is a PNG, type <1link rel="icon"
type="image/png" href="favicon.
png" />. If your image is a GIF, type
<link rel="icon" type="image/gif"
href="favicon.gif" />.

4. In the head section of your HTML5 doc-
ument, type <link rel="apple-touch-
icon" href="/apple-touch-icon.png"
/>, where apple-touch-icon.png is the
name and location of your icon on your
server.

o Favicons, in real life, are
small. They measure a measly

16 x 16 pixels.

0 Most browsers will display your favicon without
this 1ink element if you name the files favicon.ico
and apple-touch-icon.png and place them at the
root of your site.

<head>
<meta charset="utf-8" />
<title>Farm Training Podcasts</title>
<link rel="shortcut icon"
href="/favicon.ico" />
<link rel="apple-touch-icon"
href="/apple-touch-icon.png" />

</head>

162 Chapter 5

Farm Training Podcasts

| Farm Training Podcasts | 2] X:

[raining
Podcasts

the Farm Training Podcasts

G The favicon is typically used in the address bar,
in Favorites and Bookmarks menus, and in tabs.
Because the browser often displays your icon over
gray or other colors, you may want to make your
icon’s background transparent.

0 The apple-touch-
icon is used when you
add your Web site to
the home screen of iOS
devices from Safari.

FT Podcast

Favicons should generally be saved
in the ICO format (0 and @). There is a
useful Photoshop plugin for creating ICO-
format icons that is made by Telegraphics
(www.telegraphics.com.au/swy/).

You can also create favicons in the PNG
and GIF formats. Be sure to use the proper
MIME type for type.

Internet Explorer originally required the
favicon.ico file to be placed in the root
directory of your Web site. This is no longer
the case, though browsers will still look there
if the 1ink element is not present.

Images 163

www.telegraphics.com.au/sw/

This page intentionally left blank

Links

Links are the lifeblood of the Web. Without
them, every page would just exist on its
own, completely disconnected from all the
others.

In This Chapter

The Anatomy of a Link

Creating a Link to Another Web Page
Creating Anchors

Linking to a Specific Anchor
Creating Other Kinds of Links

166
167
172
174
175

The Anatomy of a Link

A link has two main parts: a destination and
a label. The first part, the destination, is
arguably the most important. You use it to
specify what will happen when the visitor
triggers the link. You can create links that
go to another page, jump within a page,
show an image, download files, send an
email message, and more. The most com-
mon links, however, connect to other Web
pages @), and sometimes to specific loca-
tions on other Web pages, called anchors.
Destinations are defined by writing a URL
(see Chapter 1) and are generally only
visible to the visitor in the browser’s status
bar (on desktop browsers).

The second part of the link is the /abel, the
part the visitor sees in a browser or hears
in a screen reader and then activates to
reach the destination. It can be text, an
image, or both. Browsers typically show
label text as underlined and in blue by
default. It's easy to change this with CSS.

Note that it's common for people to say
that a user clicks a link, a reflection of

the ubiquity of the mouse as a means to
navigate Web pages. Whenever possible,
however, | avoid this term in favor of words
like trigger and activate, to recognize the
diverse ways in which users interact with
links. For instance, users with touchscreen
devices (such as most smartphones and
tablets) tap on links, while other mobile
users may activate links via a trackball.
Meanwhile, some users navigate pages
with the keyboard, whether out of prefer-
ence or necessity; they may have a physi-
cal impairment that makes it difficult or
impossible to use a mouse, digital pen, or
similar device. These users typically tab to
links (using the Tab key to move forward,
and Shift-Tab to move backward) and then
trigger them with the Enter or Return key.

X

ANG—)

>=

N

——,
U0
=
:’_\—w‘\/

==

o Some of your pages may have links to many
other pages. Other pages may have only one link.
And still others may have no links at all.

166 Chapter 6

o Since there is only a file name (and no path)
referenced in the href attribute, the file pioneex-
valley.html must be in the same directory as this
Web page that contains the link. Otherwise, the
browser won’t be able to find pioneer-valley.html
when the user activates the link.

<body>

<article>
<h1>Cookie and Woody</h1>

<img src="img/cookiefora.jpg" width="143"
height="131" alt="Cookie" />

<img src="img/woodygran.jpg" width="202"
height="131" alt="Woody" />

<p>Generally considered the sweetest
and yet most independent cats in the

Pioneer Valley, Cookie and Woody
are consistently underestimated by
their humble humans.</p>
</article>

</body>
</html>

) Creating a Simple Link - Mocilla Firefox = Dlll
File Edit View History Bockmarke Tools Help

= :

_| Creating a Simpls Link,

Cookic and Woody

Generally considered the sweetest and yet most independent
cars in the Fioneer,alley, Cookie and Woody are consistently
underestmated by'wdcr humble humans.

http://bruceonthe. . onser-vabey. html

0 When a visitor points at a link (displayed in
most browsers as blue, underlined text by default),
the destination URL is shown in the status bar. You
can change the default styling with CSS. If a user
activates a link...

Creating a Link to
Another Web Page

If you have more than one Web page, you
will probably want to create links from one
page to the next (@) through @) and back
again. You can also link to pages on other
sites, whether they are your own or the
creation of others (@ through @).

To create a link to
another Web page:

1. Type , where
page.html is the URL of the destination
Web page.

2. Type the label text, that is, the text that
is highlighted by default @ and that
when activated will take the user to
the page referenced in step 1. Alterna-
tively (or in addition to label text), add
an img element as the label. (See @ in
“Creating Other Kinds of Links” as well
as “Linking Thumbnail Images” in that
section.)

3. Type to complete the definition of
the link.

¥) The Pinneer Valley - Mnzilla Firefs] o [ml 4

Cile Cdkt Miew llistory Doockmarks Tooks Llelp

| The Pionesr Yalley J ek =

The Pioneer Valley

Lacated in Narthwestern hMaseachucetts, the Pioneer Valley 1=
home to five colleges, including Amherst, Iampslure, Smith,
Mount Holyoke, and the University of Massachusetts.

@ ..the page associated with that destination URL
is displayed in the user’s browser.

Links 167

HTML5's Block-Level Links

HTML5 allows wrapping a link around
nearly any kind of element or group of ele-
ments (). Examples include paragraphs,
lists, entire articles and sections—pretty
much anything except interactive content
such as other links, audio, video, form
elements, iframes, and so on. Testing your
pages in an HTML validator (see “Validat-
ing Your Code” in Chapter 20) will reveal
when you’ve wrapped a link around an
element that isn’t allowed.

These block-level links, as they are called
unofficially, are a big departure from previ-
ous versions of HTML, which only allowed
linking text, images, and what were known
as inline elements. That is, the elements
that mark up phrases of text, like em,
strong, cite, and the like (these are cat-
egorized as phrasing content in HTMLD5).

The funny thing is that although block-level
links were disallowed in the previous HTML
specifications, browsers supported them
anyway. This means you can use them
now, and they’ll work in both older and
modern browsers. However, use them with
care ([and Q).

There are some accessibility concerns to
consider, particularly pertaining to how dif-
ferent screen readers treat block-level links.
These two articles, by accessibility experts
Derek Featherstone and Steve Faulkner,
respectively, discuss the issues in more
depth: http://simplyaccessible.com/article/
html5-block-links/ and www.paciellogroup
.com/blog/2011/06/htmlI5-accessibility-
chops-block-links/. They advise putting the
most pertinent content at the beginning
of a link and not putting too much content
in one link. As Featherstone notes, the
accessibility issues are likely temporary as
screen readers and browsers catch up with
supporting block-level links officially.

0 This type of link is invalid in prior versions of
HTML, but HTMLS5 allows it.

<body>

<hgroup>
<h1>Giraffe Escapes from Zoo</h1>
<h2>Animals worldwide rejoice</h2>
</hgroup>

</body>
</html>

G Don’t go overboard. Avoid doing what is shown
here, which is to wrap a link around a large chunk
of content. Although the link will work and it’s valid
HTMLS5, a screen reader may read all the content
more than once, and even that much content once
is more link information than a visitor typically
wants to hear. It's better to narrow the focus of
your link to the most relevant content.

<body>

<article>
<h1>Cookie and Woody</h1>

<img src="img/cookiefora.jpg" width=
"143" height="131" alt="Cookie" />

<img src="img/woodygran.jpg" width=
"202" height="131" alt="Woody" />

<p>Generally considered the sweetest
and yet most independent cats
in the Pioneer Valley, Cookie
and Woody are consistently
underestimated by their humble
humans.</p>
</article>

</body>
</html>

168 Chapter 6

http://simplyaccessible.com/article/html5-block-links/
http://simplyaccessible.com/article/html5-block-links/
www.paciellogroup.com/blog/2011/06/html5-accessibility-chops-block-links/
www.paciellogroup.com/blog/2011/06/html5-accessibility-chops-block-links/
www.paciellogroup.com/blog/2011/06/html5-accessibility-chops-block-links/

0 If you’re creating links to someone else’s Web
site, you’ll have to use an absolute URL, with the
http://, server, full path, and file name. The rel
and title attributes are optional, but | recommend
using rel="external" to indicate that a link points
to a different site. (See Chapter 4 to learn about
the cite element.)

<body>

<article>
<h1>The Glory of Cats</h1>

<p><a href="http://en.wikipedia.org/
wiki/Cat" rel="external" title="Cat
entry on Wikipedia">Cats are
wonderful companions. Whether it's a
bottle cap, long string, or your legs,
they always find something to chase
around.</p>

<p>In fact, cats are so great they even

have <a href="http://www.catsthe
musical.com/" rel="external"
title="0Official site of Andrew
Lloyd Webber's musical"stheir own
musical. It was inspired by T.S.
Eliot's <cite>0ld Possum's Book of
Practical Cats</cite>.</p>

</article>

</body>
</html>

) Creating a Link to Another Site - Mogilla Firchos =10l x|

B Bl Wew Moy Bookiarks Toko Help
[+]

| | resting a Uik to Another site

The Glory of Cats

Cats arc wenderful compandons. Whether 'z a bottle cap, long string, or
ik Jlegs, they abways bind thang to chase around.
i_at antry on Wikpeda

Tn fact, cats are g0 great they even hawe thesr own musical Tewas inspired
by IS, Ehol's Qi Fossum'y Sook of Practical Cats,

hittpffen. wikipedia, ong/uskljCat

@ Just as with a link to a page within your site,
when a visitor points at a link (displayed in blue,
underlined text, by default) to another site, the
destination URL is shown in the status area and
the title text, if specified, displays near the link.
If the visitor activates a link...

Generally speaking, you’ll want to stick

with the simpler, traditional style of link

shown in the first example @9, but know
that smartly crafted block-level links are
available to you as well.

href stands for hypertext reference.

You can change the default styling of
the label text (see Chapter 10) or even use an
image as a label (see “Creating Other Kinds of
Links” in this chapter).

As a general rule, use relative URLs for
links to Web pages on your site, and absolute
URLs for links to Web pages on other sites. For
more details, consult “URLs” in Chapter 1.

A link to a page at another site might look
like this: <a href="http://www.site.com/
directory/page.html” rel="external">
Label text (@ through (). The rel
attribute is optional, since the link works the
same without it. It describes the relationship
between the page containing the link and the
page to which you’re linking. It’s yet another
way of improving the semantics of your HTML.
Search engines may leverage the informa-
tion, too. An ever-evolving list of rel values

is maintained at http://microformats.org/wiki/
existing-rel-values.

) Cal_ Wik, the Iree cncyopedia - il Frelos P -TET |

Bl [e Mgy Bookmorks foi Hen

AW/ - bk, tha Fri sncycdepads |* -
Aick Discussion View souice ™ | Soearch a
Cat =

Frum VWikipedia, i e enoyciopedia

Fiv oliter uses, ses Cat

The cat [Falis carus), al

Comarvation status
Dernesticated
Scinntific clasification B |
Kingdom Arimalia

Q ...the page associated with that destination
URL is displayed in the visitor’s browser.

Links 169

http://microformats.org/wiki/existing-rel-values
http://microformats.org/wiki/existing-rel-values

Specify the path but omit the file name
to link to the default file for a directory,

which is typically index.html: www.site.com/
directory/. Omit the path as well to link to a
site’s default (home) page: www.site.com.

Use all lowercase letters for your URLs
unless you’re pointing to a page or directory
name that has uppercase letters. (For your
own sites, name all folders and files in lower-
case and match your link URLs accordingly.)

Don’t make the link’s label too long. If
the label is part of a sentence, keep only the
key words within the link definition, with the
rest of the sentence before and after the less-
than and greater-than signs of the a element.

Whatever you do, avoid using “Click here”
as a label. This type of linked text is unfortu-
nately all too common on the Web, and it’s bad
for usability, for accessibility, and for you as a
site owner. When users quickly scan links on a
page (whether visually or via a screen reader),
“click here” lacks context (“Click here? Why?”).
There’s little incentive to activate the link, and it
relies on the visitor reading the link’s surround-
ing text in hopes that it will explain the link’s
purpose. Understandably, your visitor is prob-
ably more likely to skip it. Also, as mentioned at
the beginning of this chapter, the word “click”
doesn’t apply to how all users trigger links.
Instead, identify the link by using the key words
that already exist in your text. For example,
“Learn about our sale” instead of “Click here to
learn about our sale.”

Be sure each page on your site contains
navigation to the key sections of your site,
including the home page. This allows visitors
to browse your site freely, whether they came
to your site directly or via a link from another
site. You never know where visitors will enter
your site. It might be via a link that “deep
links” to one of your inner pages, so you'll typi-
cally want to allow them to access the rest of
the site from there.

To create a link to a particular place on a
page, use an anchor (see “Creating Anchors”
in this chapter).

As noted in this chapter’s introduction,
you may navigate through a page with the
keyboard. Each time you press Tab, the focus
shifts to the next link, form control, or image
map as it appears in the HTML code, which is
not necessarily the same as where it appears
onscreen, because a page’s CSS layout may
be different. HTML's tabindex attribute
allows you to change the tabbing sequence,
but | discourage you from using it, because
it’s an unnecessary, dated practice in most
instances. (There are certain cases where it’s
helpful, but usually it’s when you’re enhanc-
ing an interaction with JavaScript, a bit of an
advanced topic.) Instead, give care to marking
up your content so the tabbing sequence is
logical. Test this by tabbing through your own
pages to see how you like it as a user, and
adjust the HTML accordingly.

170 Chapter 6

www.site.com/directory/
www.site.com/directory/
www.site.com

The target Attribute

It’s possible to make a link open in a new window or tab (depending on the browser), but it’s con-
sidered bad practice, so | recommend that you don’t do it. There are a few arguments against it.

Primarily, it should be the user’s decision to open a link in a different window or tab, not yours or
mine as HTML developers. Otherwise, we're dictating the browsing behavior on our users’ behalf.

There are usability and accessibility concerns as well. Less experienced users may be confused
when they activate a link and don’t see the results display in their current window. Using a browser
isn’t straightforward for everyone; I've shown browser tabs to people of various ages who previ-
ously had no idea that they could have more than one page open at a time. Similarly, users of
assistive devices such as screen readers will have to negotiate their way over to that new window
or tab, assuming it’s even clear which one loaded the new content.

If all this hasn’t convinced you to avoid loading links in other windows and tabs, or your boss or cli-
ent won't listen to your reasoned argument against it, here’s how to do it: type target="window"
in your link definition, where window is the name of the window (of your own choosing) where the
corresponding page should be displayed.

For instance, Some page opens some-page
-html in a new window or tab named doodad.

If you target several links to the same window (that is, using the same name), the links will all
open in that same window. Or, if you always want a link to open in a different window or tab
(even if you activated the same link more than once), use HTML's predefined name, _blank, as in
target="_blank".

But remember, you didn’t read any of that here.

There is one other use for target, which is to open a link in an iframe. You code the target

the same way, except its value should match the id of the iframe. You'll rarely have occasion to
use this, especially since iframes are generally discouraged (sometimes they have their place,
though). Learn more about the iframe element at https://developer.mozilla.org/en/HTML/Element/
iframe.

Although image maps aren’t covered here, you should know that they allow you to add a link to
one or more regions of a single image. You define the shape of each linked area as a rectangle,
circle, or polygon. Less experienced coders often misuse them to create image-based navigation,
rather than using preferred techniques such as HTML text styled with CSS (or with an image-
replacement technique when CSS alone isn’t enough). The heyday of image maps was years and
years ago before these techniques were prevalent (or even possible). You rarely see image maps
in practice now, but there is the occasional legitimate use case—for example, an image of a coun-
try, in which you want to define links to various regions, provinces, or states. You can learn more
about image maps by searching online for “HTML image maps.”

Links 171

https://developer.mozilla.org/en/HTML/Element/iframe
https://developer.mozilla.org/en/HTML/Element/iframe

Creating Anchors

Generally, activating a link brings the user to
the top of the corresponding Web page. If
you want to have the user jump to a specific
section of the Web page, create an anchor
and reference that anchor in the link @.

o Each link href value that begins with # anchors to the element with the corresponding id (sans the #).
For instance, Rising Action anchors to <h2 id="rising-action">Rising
Action</h2>. You may apply an id to any element as long as any given id exists in a page only once (see
“Naming Elements with a class or id” in Chapter 3). This example also gives you an early look at an unordered
list (ul), by far the most frequently used list type on the Web. (Lists are covered extensively in Chapter 15.)

<body>
<h1>Frankie and Johnny</h1>

<header>
<h2>Table of Contents</h2>
<hav>

Introduction</1i>
Description of the Main Characters</1i>
Rising Action

</nav>
</header>

<article>
<h2 id="intro">Introduction</h2>
<p>This is the intro. If I could think of enough things to write about, it could span a few
pages, giving all the introductory information that an introduction should introduce.</p>

<h2 id="main-characters">Description of the Main Characters</h2>
<p>Frankie and Johnny are the main characters. She’s jealous, and seems to have a reason to be.
He’s a sleaze, and will pay the price.</p>

<h2 id="rising-action">Rising Action</h2>
<p>This is where everything starts happening. Johnny goes out, without Frankie, without even
tellin’ her where he's going. She's not crazy about it, but she lets him go. A while later,
she gets thirsty and decides to go down to the corner bar for some beer. Chatting with the
bartender, she learns that Johnny has been there with no other than Nellie Bly. Furious, she
catches the crosstown bus to find him.</p>
</article>

</body>
</html>

172 Chapter 6

0 The first example was kept simple by
design, just to demonstrate basic anchoring.
However, you could go a step further with the
semantics by wrapping each answer in a section
element, placing the ids on those instead of the
headings. This denotes them as sections of the
parent article. And yet another way (not shown)
to mark up this content would be to treat each of
the answers as its own article by removing the
parent article and replacing each section with
an article. It just depends on how you want to
describe your content’s meaning (do you think

of the answers as one article of content or as
individual articles?).

<header>
<h2>Table of Contents</h2>
<nav>

Introduction</1i>

</nav>
</header>

<article>
<section id="intro">
<h2>Introduction</h2>
<p>This is the intro...</p>
</section>

<section id="main-characters">

<h2>Description of the Main
Characters</h2>

</section>

<section id="rising-action">
<h2>Rising Action</h2>

</section>

</article>

</body>
</html>

To create an anchor:

1. Place the cursor in the start tag of
the element that you wish the user to
jump to.

2. Type id="anchor-name", where
anchor-name is the text you will use
internally to identify that section of the
Web page. Be sure there is a space
between the element’s name and the
id, for example, <h2 id="rising">.

Give your anchor ids meaningful names
to increase the semantic richness of your
HTML document. In other words, avoid generic
ids like anchor1 and items.

Spaces are not allowed in ids. Separate
multi-word id values with a dash instead.

In some cases, you may want to include
a link below each section of content to anchor
back to the table of contents (you’re probably
accustomed to seeing these as “Back to top”
links). However, if your page has several long
sections, you may want to consider splitting it
into multiple pages instead.

Links 173

Linking to a
Specific Anchor

Once you have created an anchor via an
id, you can define a link so when a user
triggers it, the page jumps directly to the
section of the document that contains the
anchor (@) and @), rather than to the top
of the document.

To create a link to an anchor:

1. Type , where
anchor-name is the value of the desti-
nation’s id attribute (see step 2 of “To
create an anchor”).

2. Type the label text, that is, the text that
is highlighted (usually blue and under-
lined by default) and that when acti-
vated will take the user to the section
referenced in step 1.

3. Type to complete the definition of
the link.

If the anchor is in a separate document,
use
to reference the section. (There should be

no space between the URL and the #.) If the
anchor is on a page on a different server, you’ll
have to type <a href="http://www.site
.com/path/page.htmlttanchor-name">
(with no spaces).

Although you obviously can’t add
anchors to other people’s pages, you can
take advantage of the ones that they have
already created. View the source code of their
documents to see which anchors correspond
to which sections. (For help viewing source
code, consult “The Inspiration of Others” in
Chapter 2.)

If the anchor is at the bottom of the
page, it may not display at the top of the win-
dow, but rather toward the middle.

¥) Creating an Anchor Link to Make a Dynamic Table o —|ol x|

Eile EdiL Wew Helory Bookmarks Took Help

Creating an A Lk b Make a Dynaic ...] ar | =

Frankie and Johnny

Table of Contents

Introduction
Description of the Iain Characters
g hc"kcr.
Climiaz U i
Dencuement

Introduction

Thit is the intre. I T could think of enough things to write abeout, it
could span a tew pages, gvng all the mtroductory ntormation that
an wnfroduction should mtreduce.

Description of the Main Characters

Dtk filruceon et .. ks sa-action

=

o When the visitor points at a link that refers to
an anchor, the URL and the anchor name appear
in the status bar (in the lower-left corner of the
window) on desktop browsers.

¥} Creating an Anchor Link to Make a Dynamic Table o o] x|
fle Cdt Miew Iistory Dookmarks Tooks Lieb
Croating an Anchar Link bo Make a Drynaméc ... | = b

Rising Action 2l

This is where everything starts happening. JTohnny goes out, without
Frankie, without even tellin’ her where he's going. She's not crary
about it, but she lets him go. A while later, she gets thirsty and

decides to go down to the comer bar for some beer. Charing with

the bartender, che leams that Johnny has been there with ne other

than Melie Ely Funous, she catches the cross town bus to find J
hien.

Climax
|

‘When Frankie gets to Mlelhe's house, she looks up and sees them

0 Once the visitor activates the link, the particular
part of the page that the anchor references is
displayed at the top of the browser window.

174 Chapter 6

Creating Other
Kinds of Links

You are not limited to creating links to
other Web pages. You can create a link to
any URL—RSS feeds, files that you want
visitors to be able to download, email
addresses, and more @.

Q You can create links to all different kinds of URLs. This page includes five links, but the two around the
images may not be obvious in all browsers 0 (This example also frequently uses the abbr element to mark
up abbreviations, as well as the code element, which, not surprisingly, designates content that is code. Both
are covered in Chapter 4.)

<body>
<h1>0ther Types of Links</h1>

<p>There are lots of different kinds of links that you can create on a Web page. More precisely,
there are a lot of different files you can link to on your Web page.</p>

<p>You can create links directly to a photo or even make links out
of photos.</p>

<p>For example, here are Cookie and Woody again, except this time they are linked to other pages.
<img src="img/cookiefora.jpg" width="143"
height="131" alt="Cookie" /> <img src="img/
woodygran.jpg" width="202" height="131" alt="Woody" /></p>

<p>You can link directly to <a href="http://www.sarahsnotecards.com/catalunyalive/segadors.mov"
rel="external">a video file, too, though it's usually better to link to a page with the
video embedded in it, such as with the <abbr title="Hypertext Markup Language revision 5">HTML5
</abbr> <code>video</code> element.</p>

<p>Although you can make a link to someone's email
addresss with the <code>mailto:</code> protocol, I don't recommend it, since spambots pick
those up and then bombard them with spam. It's too bad, because they are so convenient. If you
activate the link, it opens your email program. It's probably better to offer your email address
in a descriptive way, like "someone at somedomain," although that isn't always foolproof
either.</p>

<body>
</html>

Links 175

To create other kinds of links:
1. Type <a href=".
2. Type the URL.

For a link to any file on the Web, includ-
ing images, ZIP files, programs, PDFs,
Excel spreadsheets, or whatever, type
http://www.site.com/path/file.ext,
where www.site.com is the name of the
server and path/file.ext is the path to
the desired file, including its extension.

3. Type ">.

4. Type the label for the link, that is,
the text that will be underlined and
highlighted by default and that when
activated will take the visitor to the URL
referenced in step 2. Alternatively (or in
addition to label text), add an img ele-
ment as the label. (See @) and “Linking
Thumbnail Images.”)

5. Type .

) Lreating Uther 1ypes of Links - Moaila |inelos 100 x§

Bl Qo Yew Hgoy (ookmaks Dok el
Creating Cther Types of Links |+

Other Types of Links

ste on & Web page Mare pracusely, there

ed to other pages

etter 1o bnk to & page with the wéeo

that faslpre

0 No matter where a link goes, it looks pretty
much the same by default in browsers unless you
wrap it around a photo (some browsers show a
border around the image, and some don’t). Notice
that I've tried to create labels that flow with the
body of the text, instead of using “click me.”

176 Chapter 6

http://www.site.com/path/file.ext
www.site.com

Linking Thumbnail Images

No doubt you’ve visited a photo gallery
page that shows several thumbnails (min-
iature versions of your images) linked to
larger versions. This allows you to see a
lot of photos at a glance before choosing
which ones to view full size.

Implementing a basic version of this
would be similar to the example code
that links the Cookie and Woody

images to other pages (V. Each of those
pages could contain a full-size photo.
(Advanced approaches beyond the capa-
bilities of HTML alone could allow for a
single, dynamic page.)

Be careful not to go crazy with the num-
ber of thumbnails on any given page.
They may be small, but each thumbnail
is a separate request to the Web server,
and those add up, slowing down your
page. There’s no set rule on how many
is appropriate. It partially depends on
the number and size of other assets your
page loads, as well as your intended
audience. For instance, mobile devices
typically load assets more slowly.

So, if you have a lot of thumbnails,
consider splitting them up into more
than one page. Generally, about 20-30
thumbnails per page could be reason-
able, again, taking into consideration the
factors | noted. You may want to test your
pages to determine what works best.

Lastly, | recommend marking up your list
of thumbnails with an unordered list (ul),
covered in Chapter 15.

If you create a link to a file that a browser
doesn’t know how to handle (an Excel file, for
example), the browser will either try to open a
helper program to view the file or try to down-
load it to the visitor’s drive.

Although you can link to PDFs and
other non-HTML documents (Word, Excel,

and so on), try to avoid it whenever possible.
Instead, link to an HTML page that contains
the information. PDFs can take a long time

to load, and some browsers and systems
(particularly older ones) can get sluggish
while trying to display them. For those times
when a PDF is your only option, make it clear
to users that the link points to a PDF rather
than to another HTML page so they won'’t be
surprised (users don’t appreciate being tricked
into time-consuming downloads). That advice
goes for other non-HTML documents, too. You
can message this simply by putting the file
type and size in parentheses; showing an icon
helps as well. Here’s an example (without an
icon): 02
Sales Report (PDF, 725kb). You may
want to include a title attribute (such as
title="Opens a PDF") on the link, too, espe-
cially if you put the parenthetical note outside
the link.

It’s a good idea to compress large files
and groups of files that you want visitors to
download. For instance, a set of Photoshop
templates saved as PSD files. Search online
for “ZIP and RAR?” to find tools for both creat-
ing and opening file archives using these
popular compression formats.

If you want to “create links to content on
the iTunes Store, the App Store, the iBook-
store, and the Mac App Store” (per the URL
that follows), you can use Apple’s Link Maker
(http://itunes.apple.com/linkmaker) to gener-
ate the URL to include in your HTML. If you are
an affiliate (www.apple.com/itunes/affiliates/),
Apple pays you a commission on items people
buy through your links.

Links 177

http://itunes.apple.com/linkmaker
www.apple.com/itunes/affiliates/

This page intentionally left blank

CSS Building Blocks

Whereas HTML defines your content’s

meaning and gives your Web pages their In ThIS Chapter

basic structure, CSS (Cascading Style

Sheets) defines the appearance. Constructing a Style Rule

A style sheet is simply a text file that Adding Comments to Style Rules
contains one or more rules that deter- The Cascade: When Rules Collide

mine—through properties and values—how

AP rty’s Val
certain elements in your Web page should roperty’s value

181
182
184
188

be displayed. There are CSS proper-

ties for controlling basic formatting such
as font size and color, layout properties
such as positioning and float, and print
controls such as deciding where page
breaks should appear when visitors print a
page. CSS also has a number of dynamic
properties that allow items to appear and
disappear and that are useful for creat-
ing drop-down lists and other interactive
components.

CSS2 is the version that is best supported
across browsers both new and old, so this
book will cover it extensively. CSS3, which
is still evolving as a specification, builds
upon CSS2 to provide features that design-
ers and developers have long been clam-
oring for. The great news is that modern
browsers have implemented several CSS3
components already, so you’re able to start
using them today. You’'ll learn some of the
most useful features with the best support.

The wonderful thing about CSS is that it
can be created outside of a Web page
and then applied to all the pages on your
site at once. It is flexible, powerful, and
efficient and can save you lots of time and
bandwidth.

To get the full benefit of CSS, your Web
pages must be marked up well and consis-
tently according to the recommendations
in the HTML chapters.

180 Chapter7

Selector Declaration block

o
h1 {

color: red; }—Declaration

.} Property Value

o A style rule is made up of a selector (which
indicates which elements will be formatted) and a
declaration block (which describes the formatting
that should be executed). Each declaration within
the block is a property/value pair separated by a
colon and ending with a semicolon. A left curly
brace begins a declaration block, and a right curly
brace ends it.

h1 {
background: yellow;

color: red;

y [

Two declarations, each with a
property and a value

0 The order of declarations doesn’t matter
unless the same property is defined twice.

In this example, color: red could be before
background: yellow and have the same effect.
Note the extra spacing and indenting (optional, but
recommended) to keep everything readable.

Constructing a
Style Rule

Each style rule in a style sheet has two
main parts: the selector, which determines
which elements are affected, and the
declaration block, made up of one or more
property/value pairs (each constitutes a
declaration), which specifies just what
should be done (@) and ©).

To construct a style rule:

1. Type selector, where selector identi-
fies the element or elements you wish
to format. You'll learn how to create all
sorts of selectors in Chapter 9.

2. Type { (an opening curly bracket) to
begin the declaration block.

3. Type property: value;, where
property is the name of the CSS prop-
erty that describes the sort of formatting
you’d like to apply and value is one of
a list of allowable options for that prop-
erty. Descriptions of CSS properties and
values begin in Chapter 8.

4. Repeat step 3 as needed. Typically,
you'll enter each property: value (a
declaration) on its own line.

5. Type } to complete the declaration
block and the style rule.

You may add extra spaces, tabs, or
returns in a style rule to keep the style sheet
readable (:). The format in the example is per-
haps the most common among coders.

Although each property/value pair should
be separated from the next by a semicolon, you
may omit the semicolon that follows the last
pair in the list. But | recommend you always
include it, since it’s a best practice to do so.

@D Missing (or duplicate) semicolons can
cause the browser to ignore the style rule.

CSS Building Blocks 181

Adding Comments
to Style Rules

It's a good idea to add comments to your
CSS to note the primary sections of your
style sheets or simply to explain something
about a particular rule or declaration. Com-
ments help not only you but also others
who are viewing your code. For your own
sake, you’ll be happy that you left yourself
comments if you revisit the code some
months after having initially worked on it.

To add comments to style rules:

1. Inyour style sheet, type /* to begin
your comment.

2. Type the comment.

3. Type */ to signal the end of the
comment.

Comments may include returns and thus
span several lines 0

You may not put comments inside other
comments. In other words, comments may not
include */.

You may start comments on their own
line 0, inside a declaration block 0, or after
arule 0

o Comments can be long or short, though they
tend to be short. Use them as you see fit to
describe the purpose of a style rule or a group of
related rules. Comments go a long way toward
making your style sheet easier to maintain.

/* This is a CSS comment. It can be one
line long or span several lines. This
one is longer than most. Regardless, a
CSS comment never displays in the
browser with your site's HTML content.
The next one is more in line with a
comment's typical use. */

/* Set default rendering of certain HTMLS
elements for older browsers. */

article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;

0 You can also insert comments within the declaration block or after a rule.

/* Add rounded corners in supporting browsers */
.box {
-webkit-border-radius: 12px; /* Safari 3-4 */

border-radius: 12px; /* modern browsers */
} /* One more comment for good measure! */

-moz-border-radius: 12px; /* Firefox 3.6 and below */

182 Chapter7

G Comments make your life easier when
managing style sheets. Simply comment primary
sections of rules within your style sheets to keep
them organized. | find that using a format like the
one here (with all caps and an underline) makes
it clear where each major grouping begins. This
treatment clearly distinguishes them from other
comments, such as the ones in and

/* GLOBAL NAVIGATION

_______________________________ */
. rules for global nav ...

/* MAIN CONTENT
_______________________________ */
. rules for main content ...

/* SIGN-UP FORM

_______________________________ */
. rules for sign-up form ...

/* PAGE FOOTER

_______________________________ */

. rules for page footer ...

0 You can “comment out” a declaration that you
don’t want to affect the page. Here, all images will
get a four-pixel solid red border but not a right
margin treatment, because margin-right: 12px;
is inside a comment. A comment can go around
an entire rule too, as long as there aren’t any
comments inside the comment.

img {
border: 4px solid red;
/* margin-right: 12px; */

Comments are extremely helpful as an
organizational tool. Style sheets can quickly
get long, so organizing them is critical to
making your CSS easy to evolve and maintain.
It’'s common practice to group related rules
together and precede each with a descriptive
comment @.

However you format your comments (9,
| recommend you decide on a convention and
use it consistently, especially if you’re working
with a team.

You can put comments around or within
style rules to hide them from the browser 0
This is a good way to test a style sheet without
permanently removing the commented por-
tion until (and if) you are ready to do so. It’s a
helpful debugging tool; comment out some-
thing you think might be causing a problem,
refresh the page in the browser, and see if the
problem is fixed.

Although these examples are heavy on
comments for demonstration purposes, don’t
feel the need to comment everything. You’ll
probably find your style sheets harder to read
if they have too many comments. You’ll prob-
ably find that a good mix entails organizational
comments coupled with descriptive ones as
needed. Find the balance that works for you
and the others on your team.

CSS Building Blocks 183

The Cascade: When
Rules Collide

Styles come from many sources. As you
learned in Chapter 1, every browser has

its own default styles. But you can apply
your own styles to override or complement
those in three ways: You can load one

or more from an external file (the recom-
mended method) @), insert them at the top
of an HTML document, or apply them to a
specific HTML element right in the code
(though this is to be avoided whenever
possible). See the next chapter for specif-
ics about each method.

Also, some browsers let your visitors cre-
ate and apply their own style sheets to any
pages they visit—including yours. Finally,
some styles are passed down from parent
element to child.

o This is the style sheet for the HTML document
in €. Don’t worry too much about the details
right now, but do notice that there is a rule for p
elements, but not for h1, em, or small elements.

p{

color: #36¢c;

font-family: "Trebuchet MS",
"Helvetica", sans-serif;

font-weight: bold;

}
img {
float: left;
margin-right: 10px;
}

0 The em and small elements are contained
within the p element and thus are children of p.
However, the hi is not, so it isn’t blue like the
other text G

<body>
<h1>The Ephemeral Blue Flax</hi>

<img src="img/blueflax.jpg" width="300"
height="175" alt="Blue Flax (Linum
lewisii)" />

<p>I am continually amazed at the
beautiful, delicate Blue Flax that somehow
took hold in my garden. They are awash in
color every morning, yet not a single
flower remains by the afternoon. They are
the very definition of ephemeral.</p>

<p><small>© by Blue Flax Society.
</small></p>

</body>
</html>

184 Chapter7

) Blue Flan (Linum lewisii) - Mozilla Firctos i =10]=|

| L1 Bhue Pl frmam bty |+

The Ephemeral Blue Ilax

I am continually
amazed at the
baautiful, delicats
Blue Flax that
. N semehow took
hold in my garden
F They are awash in
A TR Gl color every
morning, yet not a single flower remains by the afternoon
They are the very definition of ephemeral

& Mlue Tlax Society.

0 In the absence of a rule specified explicitly
for the em and small elements in 0 they inherit
their font, weight, and color from their parent, the
p element. The italics come from the browser’s
default styling of em. The size of the legal notice
marked up with small (that is, legal “fine print”)
is reduced for the same reason. The h1 does not
have its own style and is not a child of p, so it
displays entirely in accordance with the browser
default.

What happens, you might ask, when there
is more than one style rule that applies to
a given element? CSS uses the principle
of the cascade to take into account such
important characteristics as inheritance,
specificity, and location in order to deter-
mine which of a group of conflicting rules
should win out.

Let’s start with inheritance. Many CSS prop-
erties not only affect the elements defined
by the selector but are also inherited by
the descendants of those elements ()
through @). For example, suppose you
make all your h1 elements blue with a red
border. It so happens that the colox prop-
erty is inherited, but the border property is
not. Thus, any elements contained within
the h1 elements will also be blue, but they
will not have their own red border. You'll
learn which properties are inherited in the
individual section describing each property
(and in Appendix B on the book’s site). You
can also use a value of inherit with most
properties to force inheritance (see the
next section, “A Property’s Value”).

CSS Building Blocks 185

While inheritance determines what hap-
pens if no style rule is applied to an
element, specificity is the key when more
than one rule is applied (@) through @).
The law of specificity states that the more
specific the selector, the stronger the rule.
Makes sense, right? So if one rule states
that all ha elements should be blue but a
second rule states that all ha elements with
a class of spanish be red, the second rule
will override the first for all those h1 ele-
ments whose class is spanish, because
hi.spanish is a more specific selector than
simply h1.

Note that id attributes are considered the
most specific (since they must be unique
in a document), while the presence of a
class attribute makes a selector more
specific than a simple selector that has
none. Indeed, a selector with more than
one class is more specific than a selector
with only one. Selectors with only element
names come next on the specificity scale;
inherited rules are considered to be the
most general of all and are overruled by
any other rule.

For the exact rules of calculating specific-
ity, see Section 6.4.3 of the CSS specifica-
tions (www.w3.org/TR/CSS21/cascade
.html#specificity).

0 In this example, there are four rules of varying
specificity. The first affects any p element, the
second affects only those p elements with a class
equal to group, and the third and fourth affect only
the single p element with an id equal to last.

p{
}

color: red;

p-group {
color: blue;
}

p#last {
color: green;
}

p#last {
color: magenta;
}

G Three paragraphs: one generic one, one with
just a class, and one with a class and an id.

<body>

<p>Here's a generic <code>p</code> element.
It will be red.</p>

<p class="group"sHere's a <code>p</code>
element with a <code>class</code> of
<code>group</code>. There are two rules
that apply, but since the <code>p.group
</code> rule is more specific, this
paragraph will be blue.</p>

<p id="last" class="group">Here's a <code>
p</code> element with an <code>id</code>
of <code>intro</code>. There are four rules
that could apply to this paragraph. The
first two are overruled by the more
specific last two. The position breaks
the tie between the last two: the one
that appears later wins, and thus this
paragraph will be magenta.</p>

</body>
</html>

186 Chapter7

www.w3.org/TR/CSS21/cascade.html#specificity
www.w3.org/TR/CSS21/cascade.html#specificity

¥) specificity - Mozilla Firefox I =101 x|
File Edt Miew History Bookmarks Tools Help

| Specificity | T| ¥

Here's a genenc p element. It will be red

Here's a p element with a class of group. There are two

rules that apply, but since the ». group rule is more specific,
this paragraph will be blue.

0 Since the third and fourth rules have the same
specificity, their position becomes a factor—and
thus the fourth rule wins out since it appears last.

Sometimes, specificity is not enough to
determine a winner among competing
rules. In that case, the location of the rule
breaks the tie: Rules that appear later have
more weight (€) through @). For example,
rules that are applied inline right in the
HTML element (again, not recommended)
are considered to appear after (and thus
have more weight than) equally specific
rules applied in either an external style
sheet or one embedded at the top of the
HTML document. For details, consult “The
Importance of Location” in Chapter 8.

If that isn’t enough, you can override the
whole system by declaring that a particular
rule should be more important than the
others by adding !important at the end
of the rule. (This also isn’t recommended
except in uncommon cases.)

In summary, in the absence of a rule, many
styles are passed down from parent ele-
ment to child. With two competing rules,
the more specific the rule, the more weight
or importance it has—regardless of its loca-
tion. With two rules of equal specificity, the
one that appears later in the style sheet
wins.

If any of this sounds confusing, don’t worry
about it right now. Once you start playing
with CSS and different selectors, | think
you’ll find that the cascade operates just as
you’d expect it to in most cases.

CSS Building Blocks 187

A Property’s Value

Each CSS property has different rules
about what values it can accept. Some
properties accept only one of a list of
predefined values. Others accept numbers,
integers, relative values, percentages,
URLs, or colors. Some can accept more
than one type of value. The acceptable
values for each property are listed in the
section describing that property (mostly
in Chapters 10 and 11), but you’ll learn the
basic systems here.

Inherit

You can use the inherit value for any
property when you want to explicitly
specify that the value for that property be
the same as that of the element’s parent.

Predefined values

Most CSS properties have a few pre-
defined values that can be used. For
example, the float property can be set
to left, right, or none. In contrast with
HTML, you don’t need to—and indeed
must not—enclose predefined values in
quotation marks @.

Lengths and percentages

Many CSS properties take a length for
their value. All length values must con-
tain a quantity and a unit, with no spaces
between them. For example, 3em or
10px @. The only exception is 0, which
may be used with or without units.

A preset value

border: none;

0 Many CSS properties will only accept values
from a predefined list. Type them exactly and do
not enclose them in quotation marks.

A length

font-size: 24px;

0 Lengths must always explicitly state the unit.
There should be no space between the unit and
the measurement.

188 Chapter7

A percentage

font-size: 80%;

0 Percentages are generally relative to the
parent element. So in this example, the font would
be set to 80 percent of the parent’s font size.

A number

L
line-height: 1.5;

0 Don’t confuse numbers and integers with
length. A number or integer has no unit (like px). In
this case, the value shown here is a factor that will

be multiplied by the font size to get the line height.

There are length types that are relative to
other values. An em is roughly equal to the
element’s font size, so 2em would mean
“twice the font size.” (When the em is used
to set the element’s font-size property
itself, its value is derived from the font size
of the element’s parent.) The ex should

be equal to the font’s x-height, that is, the
height of a letter x in the font, but its sup-
port varies, so you aren’t likely to use it.

Pixels (px) are not relative to other style
rules. For instance, values in px aren’t
affected by the font-size setting, as

ems are. A pixel on one type of device
isn’t necessarily the same size as on
another. (See Peter-Paul Koch’s detailed
description at www.quirksmode.org/blog/
archives/2010/04/a_pixel_is_not.html.)

There are also the largely self-explanatory
absolute units, such as points (pt), which

is a unit that should be reserved for print
style sheets. (There are others, but there’s
little point in mentioning them, because
they aren’t used in practice.) In general,
you should only use absolute lengths when
the size of the output is known (as with pt
and the printed page).

Percentage values—65%, for example—
work much like ems, in that they are relative
to some other value @.

Of all these, you will use ems, pixels, and
percentages the most.

Bare numbers

A very few CSS properties accept a value in
the form of a number without a unit, like 3.
The most common are line-height @
and z-index (see “Setting the Line Height”
in Chapter 10 and “Positioning Elements in
3D” in Chapter 11, respectively). (The others
are mostly for print and aural style sheets
and are not yet well supported.)

CSS Building Blocks 189

www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html
www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html

URLs

Some CSS properties allow you to specify
the URL of another file, particularly images.
In that case, use url(file.ext), where
file.ext is the path and file name of the
desired asset @. Note that the specifica-
tions state that relative URLs should be
relative to the style sheet and not to the
HTML document.

While you may use quotation marks

around the file name, they’re not required.
On the other hand, there should be no
space between the word url and the open-
ing parentheses. White space between the
parenthesis and the address is allowed but
not required (or customary).

For more information on writing the URLs
themselves, consult “URLs” in Chapter 1.

CSS colors

You can specify colors for CSS proper-
ties in several ways. First, and easiest, the
value can be one of the predefined color
keywords. CSS3 specifies a basic list of

16 names @ and adds 131 more to align
with the 147 SVG 1.0 color keyword names.
The full list is available at www.w3.org/TR/
css3-color/#svg-color.

Of course, no one remembers any of those
color names outside of the obvious ones
anyway. Also, you typically grab the colors
from tools like Adobe Photoshop, and they
don’t use the CSS color name. So in prac-
tice, it's more common to define your CSS
colors with the hexadecimal format (the
most common by far) or the RGB format. As
you will learn, you can also specify a color
with the HSL format, and the level of color
transparency with RGBA and HSLA, all of
which are new in CSS3.

A URL

'—I—|
background: url(bg_flax.jpg);

G URLs in CSS properties do not need to be
enclosed in quotation marks.

16 Predefined Colors

aqua black blue fuchsia
#0OFFFF #000000 #0000FF #FFOOFF

gray green lime maroon
#808080 #008000 #00FFOO #800000

navy olive purple red
#000080 #808000 #800080 #FFO000

silver teal white yellow
#C0OCOCO #008080 #FFFFFF #FFFFOO

0 The most common way in CSS to define a color
is by specifying, with hexadecimal numbers, the
amounts of red, green, and blue that it contains.

190 Chapter?7

www.w3.org/TR/css3-color/#svg-color
www.w3.org/TR/css3-color/#svg-color

The amount of
red in the color

The amount of
green in the color

The amount of
blue in the color

—
color: rgh(89, 0, 127);

@ Another way to express color in CSS is with
RGB numeric values from 0-255. Define red first,
followed by green, and then blue.

The amount of
red in the color

The amount of
green in the color

The amount of
blue in the color

color: #59007f;

0 The most common way in CSS to define a color
is by specifying, with hexadecimal numbers, the
amounts of red, green, and blue that it contains.

RGB

You can construct your own color by
specifying its amount of red, green, and
blue (hence the name RGB). You can give
the values of each of these contributing
colors as a number from 0-255, a percent-
age, or a hexadecimal representation of
the number. For example, if you wanted to
create a dark purple, you might use 89 red,
no green, and 127 blue. That color could be
written rgb(89, 0, 127), as shown in @.

Alternatively, you could represent each
value as a percentage, though it is far less
common to do so, likely because image
editors like Photoshop tend to provide you
numerical RGB values. But if you do want
to use percentages, you could write the
same color as rgb(35%, 0%, 50%), since 89
is 35% of 255 and 127 is 50% of 255.

Hexadecimal

I've saved the most common method for
last @). Convert those numerical values to
hexadecimals, join them together, and pre-
fix the value with a #, as in #59007F. (59 is
the hexadecimal equivalent of 89, 00 is the
hexadecimal equivalent of O, and 7F is the
hex equivalent of 127.) You can also write 7F
as 7f (my preference, but plenty of devel-
opers and designers go the other way).

When a hexadecimal color is composed

of three pairs of repeating digits, as in
#f£3344, you may abbreviate the color to
#f34. In fact, it’s a best practice to do so,
since there’s no reason to make your code
longer than it needs to be.

If you’re scratching your head about hexa-
decimals, don’t fret. Just as Photoshop and
the like include tools for choosing colors
and displaying their RGB values, so, too, do
they for hex.

CSS Building Blocks 191

More color options in CSS3:
RGBA, HSLA, and HSL

CSS3 introduces another way to specify
colors—HSL—and the ability to set alpha
transparency via RGBA and HSLA. (You
can’t indicate alpha transparency with
hexadecimal notation.)

RGBA

RGBA is the same as RGB except the A
stands for alpha transparency. You can
specify the amount of transparency with
a decimal from O to 1 after the red, green,
and blue values. So, the syntax is the
following:

property: rgba(red, green, blue,
alpha transparency);

The closer to 0 the alpha setting, the more
transparent the color becomes. If it is O,
it's completely transparent, as if you hadn’t
set a color at all. Similarly, 1is completely
opaque, meaning it’s not transparent at all.
Here are some example declarations to
illustrate the point:

/* no transparency, so the same as
rgb(89, 0, 127); */

background: rgba(89,0,127,1);

/* completely transparent */

background: rgba(89,0,127,0);

/* 25% transparent */

background: rgba(89,0,127,0.75);

/* 60% transparent */
background: rgba(89,0,127,0.4);

o This simple style sheet applies a repeating
background image and default text color to the
whole page, with slightly different background
treatments for the h1—h3 headings. Modern
browsers display the result shown in . As you’ll
learn later, versions of Internet Explorer prior

to IE9 don’t support RGBA, so they ignore the
declarations on the h1 and h2

/* Set repeating page background image and
default text color */
body {
background: url(../img/blueflax.jpg);
color: #ffo;

}
/* 25% transparent */
h1 {
background: rgba(89,0,127,0.75);
}
/* 60% transparent */
h2 {
background: rgba(89,0,127,0.4);
}

/* Solid background (not transparent) */
h3 {

}

background: rgh(89,0,127);

192 Chapter7

) HLbA kxample - Mozilla Firefos) P = 3|

bile Edt Wew FHgory Bookmarks ook Help

- o ol o
-This h1 is 25% transparen
WA el W

This.h2,i§ 60%, transparent

gl I SVER W T Yt
This 13 has the same background color as the other
‘two bul doesn'l have an alpha ransparency selting ’

o In this gaudy but effective example, you can
see the page background image peeking through
the background of the first two headings but not
of the last one. The background color for all three
is the same, but they look like three different
shades of purple because of their different alpha
transparency settings. (The text is yellow because
the color property set on the body element
cascades down to all text on a page unless it is
overridden by a style rule for another element.)

The hue
The saturation level

The lightness
level

—
color: hsl(282, 100%, 25%);

0 The breakdown of the HSL formatting.

Of course, in order to make those work,
you’ll need to include them in one or more
rules @. As shown, it's common to lever-
age alpha transparency on the background
color of an element, because alpha
transparency allows whatever is behind
the element—an image, other colors, text,
and so on—to peek through and blend with
it @. To be clear, though, you can also set
alpha transparency on other color-based
properties, such as color, border, border-
color, box-shadow, and text-shadow, with
varying degrees of browser support (you’re
in the clear with modern browsers).

As you can see, the RGB color values

are the same in the code, but the colors
themselves appear different in the browser
because of their different levels of trans-
parency @.

HSL and HSLA

HSL and HSLA are the other new additions
in CSS3. The latter is the alternative to
RGBA for setting alpha transparency on a
color. You specify the alpha the same way
you do with RGBA. You’ll see that in a sec-
ond, but first take a look at how HSL works.

HSL stands for hue, saturation, and light-
ness, where hue is a number from 0-360,
and both saturation and lightness are
percentages from O to 100 @. In CSS, the
syntax is:

property: hsl(hue, saturation,
lightness);

CSS Building Blocks 193

And, as you guessed it, the HSLA format

is this:

property: hsla(hue, saturation,
lightness, alpha transparency);

For instance, here’s the same purple from

the RGBA and RGB example @) expressed

in HSLA and HSL instead:

/* 25% transparent */

h1 {

background: hsla(282,100%,
25%,0.75);

/* 60% transparent */
h2 {

background: hsla(282,100%,
25%,0.4);

/* Solid background (not
transparent) */

h3 {
background: hs1(282,100%,25%);

}

The result in modern browsers is the same
as before

Think of the hue value as a degree on a
circle, with 0 and 360 meeting at the top.
This means that both O and 360 are the
same color—red. (Don’t confuse HSL with
HSB or HSV. They are similar, but not the
same.)

Not all image editors specify HSL out of
the box (you can get a plugin for Photo-
shop). However, Mathis’s HSL Color Picker
is a great, free online tool that allows

you to pick a color and get its HSL, hex,
and RGB values, or you can type in values

How to Think in HSL

Learning HSL's logic takes some time,
but once you get a feel for it you may find
it easier to work with than other formats.
In the “Why?” section of his HSL Color
Picker site (http://hslpicker.com), Brandon
Mathis provides a nice explanation of
HSL. He writes:

“Pick a hue from 0 to 360, and with
saturation at 100 and luminosity

at 50 you’ll have the purest form
of that color. Reduce the satura-
tion and you move toward gray.
Increasing the luminosity moves
you toward white, decreasing it
moves you toward black.”

For example, here are some core colors
as you move around the circle:

= Redis hs1(0,100%,50%);

= Yellow is hs1(60,100%,50%);

= Greenis hs1(120,100%,50%);

m Cyanis hs1(180,100%,50%);

= Blueis hs1(240,100%,50%);

= Magenta is hs1(300,100%,50%);

194 Chapter7

http://hslpicker.com

o Modern browsers render the RGBA declaration
because it comes after the default hexadecimal
background setting (which it also understands,

so the order is important). Meanwhile, versions of
IE prior to IE9 ignore the RGBA setting because
they don’t understand it, so the hex background
stands. You could use RGB (but not RGBA) instead
of hex in the first line, but as noted, hex is the most
common way to denote non-transparent colors.

/* The order of the background declarations
is important. Older versions of IE use the
first line, and modern browsers understand
both lines but apply the second because
it's last. ¥/

h1 {
background: #59007f;
background: rgba(89,0,127,0.75);

@ Look away before your eyes burn! This verbose
mixture of code sandwiches declarations for
pre-IE9 versions (highlighted) around the standard
RGBA notation (not highlighted). As usual, the older
versions of [E ignore what they don’t understand.
Similarly, modern browsers ignore the -ms-filter,
filter, and zoom values since they don’t under-
stand them. The order of the declarations is
essential to making this technique work.

/* If you’re like me, you’ve already begun to
cry. Every declaration except the second
one is for older versions of IE to mimic
alpha transparency. */

h1 {
background: transparent;
background: rgba(89,0,127,0.75);

/* IE8 */

-ms-filter: “"progid:DXImageTransform.
Microsoft.gradient(startColorstr=
#BF59007F,endColorstr=#BF59007F)";

/* IE6 & 7 */

filter: progid:DXImageTransform.
Microsoft.gradient(startColorstr=
#BF59007F,endColorstr=#BF59007F);

zoom: 1;

for any of the formats to see the color
change. Another such tool is located at
www.workwithcolor.com/hsl-color-picker-01
.htm. It shows the colors on a circle, which
may help you get a better feel for HSL. (In
contrast, HSL Color Picker shows them on
a line.) You can find other color tools by
searching online.

RGBA, HSL, and HSLA in Internet Explorer

Sadly, as is often the case with the lat-
est developments in the standards world,
no version of Internet Explorer prior to
IE9 supports these features. Instead,
they ignore any declaration they don’t
understand.

There is a workaround for pre-IE9 versions
regarding RGBA and HSLA. But in terms of
HSL, you’ll want to stick with hexadecimal
(or RGB) to specify your colors.

For RGBA and HSLA in pre-IE9 versions,
you’'re left with three options (but only one
at a time):

m Do nothing and let your page look fairly
different in these versions.

m Provide a fallback color declaration for
them, meaning they will display a solid
color not a transparent one @.

m Mimic the alpha transparency by includ-
ing declarations specifically for them,
most of which are proprietary IE CSS;
modern browsers will still use the stan-
dard CSS, though @.

This last option uses Internet Explorer’s
Gradient filter in conjunction with propri-
etary code that no other browser under-
stands. That means modern browsers will
ignore it and use the standard notation
instead, which in this case is background:
rgba(89,0,127,0.75); (it overrides the
previous background value). Be aware
that the declarations must be in the order
shown for the transparency effect to apply

CSS Building Blocks 195

www.workwithcolor.com/hsl-color-picker-01.htm
www.workwithcolor.com/hsl-color-picker-01.htm

properly across browsers both modern and
otherwise

| won’t bother to explain how IE’s Gradient
filter syntax works, since it’s so convoluted
you’ll probably never write it by hand. |
don’t. Instead, another free online tool
rescues you (you’ll see more and more of
these as you learn more about CSS3).

This one comes in the form of Michael
Bester's RGBa & HSLa CSS Generator for
Internet Explorer (http://kimili.com/journal/
rgba-hsla-css-generator-for-internet-
explorer). As he explains, you enter an
RGBA or HSLA declaration, and the tool
creates the equivalent CSS for pre-IEQ.
Then you copy and paste it into your style
sheet. One important note: The code that
the tool generates does not include the
standard RGBA or HSLA declaration for
modern browsers. So, you'll have to add
that yourself directly after background:
transparent, just as it is shown in the
example (). Alternatively (and often prefer-
ably), as Michael notes, you can place the
pre-IE9Q CSS in its own style sheet and load
it inside what are known as conditional
comments. (See http://reference.sitepoint
.com/css/conditionalcomments for more
information.)

Internet Explorer’s filters, such as the
Gradient filter (), can affect the browser’s
performance because they require extra
processing power. You likely won’t have any
noticeable issues if a filter is applied to a
reasonable number of elements on a page,
but a delay can sometimes be seen beyond
that. It can depend on what’s on the rest of
your page, too. So be mindful of this as you’re
building a page, and if you’re seeing a slow-
down in IE you may want to turn off the filter
to see if that’s the issue. IE filters can some-
times have other unexpected side effects, like
adversely affecting the quality of text render-
ing. To clarify, these won’t affect other brows-
ers since they don’t understand filters.

196 Chapter7

http://kimili.com/journal/rgba-hsla-css-generator-for-internet-explorer
http://kimili.com/journal/rgba-hsla-css-generator-for-internet-explorer
http://kimili.com/journal/rgba-hsla-css-generator-for-internet-explorer
http://reference.sitepoint.com/css/conditionalcomments
http://reference.sitepoint.com/css/conditionalcomments

Working with
Style Sheets

Before you start defining your style sheets,
it's important to know how to create and
use the files that will contain them. In this
chapter, you'll learn how to create a style
sheet file and then how to apply CSS to
multiple Web pages (including a whole
site), a single page, or an individual HTML
element. You achieve these via three meth-
ods: external style sheets (the preferred
choice), embedded style sheets, and inline
styles (the least desirable).

You'll learn how to create the content
of your style sheets in the chapters that
follow.

In This Chapter

Creating an External Style Sheet
Linking to External Style Sheets
Creating an Embedded Style Sheet
Applying Inline Styles

The Importance of Location

Using Media-Specific Style Sheets
Offering Alternate Style Sheets
The Inspiration of Others: CSS

198
200
202
204
206
208

210

212

Creating an External
Style Sheet

External style sheets are ideal for giving
most or all of the pages on your Web site
a consistent look. You can define all your
styles in an external style sheet and then
tell each page on your site to load the
external sheet, thus ensuring that each
will have the same settings. Although later
you will learn about embedded and inline
styles, adding CSS to your page from an
external style sheet is a best practice, so
I highly recommend you use this method
(allowing for occasional exceptions).

To create an external style sheet:

1. Create a new text document in your
text editor of choice @).

2. Define the style rules for your Web
pages as described beginning with
Chapter 7. Also, include CSS comments
as you see fit

3. Save the document in a text-only format
in the desired directory. Any name will
do, but give the document the exten-
sion .css to designate it as a Cascading
Style Sheet ©@.

[P untitled - Notepad I 1Ol x|
File Edit Format ‘iew Help
Bcharset "UTF-8"; =]

A% A simple style sheet %/
img

3
| =

horder: 4px solid red;

o Use any text editor you like to create a style
sheet. This is Notepad (an older version). Most
people use the same editor to create both HTML
and CSS documents. The text between /* */ is

a CSS comment that neither affects your page’s
display nor appears in your page.

File name: Ibase.css j
[

Save az lype: I Text Documents [~ txt]

0 Be sure to save the CSS file with the .css
extension and in text-only format (as a Text

Document or Plain Text or ASCII or whatever your
text editor calls it).

198 Chapter 8

You can name your style sheets however
you please. base.css and global.css are
two popular names for the style sheet that
contains the display rules intended for all or
the majority of pages on a site. Site authors
often create additional, section-specific CSS
files to complement the base styles. For
instance, if you’re building a commerce site,
products.css could contain the rules for
your product-related pages. Regardless of the
file names you choose, make sure they don’t
contain any spaces.

External style sheets can be either linked
to (as demonstrated in “Linking to External
Style Sheets”) or imported (via @import),

but | don’t recommend you import them.

The @import directive negatively affects
page download and rendering speed, par-
ticularly in Internet Explorer, as discussed by
Steve Souders at www.stevesouders.com/
blog/2009/04/09/dont-use-import/.

The @charset declaration that begins
the style sheet isn’t always required, but there
is no harm in always including it). However,
it is required if your style sheet will contain
non-ASCII characters, which can be the case if
you’re using CSS-generated content (a some-
what advanced topic) or a Web font with a spe-
cial character in its name. For this reason, you
may choose to always include @charset so
you won’t have to worry about adding it later
if your style sheet needs it. Just be sure it’s on
the very first line of your style sheet. However,
never include @charset in embedded or inline
styles (covered later in this chapter).

Working with Style Sheets 199

www.stevesouders.com/blog/2009/04/09/dont-use-import/
www.stevesouders.com/blog/2009/04/09/dont-use-import/

Linking to External
Style Sheets

Now that you've created a style sheet),
you need to load it into your HTML pages
so the style rules are applied to the con-
tent. The best way to do so is to link to the
style sheet ©@.

To link an external style sheet:

1. Type <link rel="stylesheet" in the
head section of each HTML page in
which you wish to use the style sheet.

2. Type a space and then href="url.css",
where url.css is the name of your CSS
style sheet (see previous section).

3. Type a space and the final />. (Or, if
you prefer, type no space and simply »;
HTML5 allows both approaches, and
they work exactly the same.)

When you make a change to an external
style sheet, all the pages that reference it are
automatically updated as well (0 and 0).
That is the awesome power of an external
style sheet!

Another benefit to an external style
sheet is that once a browser has loaded it for
one page, it typically doesn’t need to retrieve
it from the Web server for subsequent pages.
The browser caches the file, which is to say it
saves it on the user’s computer and uses that
version, which speeds up the load time of your
pages. Don’t worry, though; if later you make
changes to your style sheet and upload it to
your Web server, browsers will download your
updated file rather than use the cached one
(technically there are exceptions, but none
you’re likely to face often).

o Here’s the base.css external style sheet
created earlier in the chapter (minus the “A simple
style sheet” comment, which has no bearing

on the HTML's display). Don’t worry about the
properties and values yet (they just mean “create a
solid red border around all img elements”).

@charset "UTF-8";

img {
border: 4px solid red;

}

0 The link element goes inside the head section
of your HTML document. Your page may contain
more than one link element, but it’s best to keep
the total to a minimum so your page loads faster.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8" />
<title>El Palau de la Masica</title>
<link rel="stylesheet"

href="base.css" />

</head>

<body>

<articley
<h1>El Palau de la Misica</h1>

<img src="img/palau250.jpg" width="250"
height="163" alt="El Palau de la
Masica" />

<img src="img/tickets.jpg" width="87"
height="163" alt="The Ticket Window" />

<p>I love the Palau de la

Misica. It is ornate and gaudy
and everything that was wonderful
about modernism. It's also the home
of the Orfeé Catala
, where I learned the benefits
of Moscatell.</p>

</article>

</body>

</html>

200 Chapter 8

E) El Palau de la Misica - Mozilla Firefon =10 %|
Fir Edit View History Bockmarks Tooks Help
| 1 €1 Polou do o Misica | +| -

Fl Palau de la Musica

Ilove the Palau de la Midsica. It is ornate and gaudy and everything
that was wonderful about modernism. It's also the home of the
Orted Catala, where [learned the benelits of Moscatell

G The style rule (a solid red border that is four
pixels thick) is applied to each img element.

&) sunflowers - Mozilla Firefost

There are fields and fields of sunflowers, that mrn with the passing
of the sun.

0 Other documents can link to the very same
external style sheet to have the same styles
applied.

For simplicity’s sake, the 1ink example
shown here assumes that the HTML page
lives in the same directory as base.css).
However, in practice it is best to organize
your style sheets in a sub-folder rather than
mix them with your HTML pages. Popular
style sheet folder names include css and
styles, but you can name it whatever you
like as long as you refer to it properly in the
link’s href value. For example, if base.
css is in a folder named css and your HTML
is in the folder above it, the 1ink element
would read <link rel="stylesheet"
href="css/base.css" />.

URLs in an external style sheet are
relative to the location of the style sheet file
on the server, not to the HTML page’s loca-
tion. You’ll see this in action when you learn
about CSS background images in Chapter 10
(“Setting the Text’s Background”).

An external style sheet’s rules may be
overridden by styles within an HTML docu-
ment. The relative influence of styles applied
in different ways is summarized in “The Impor-
tance of Location,” later in this chapter.

You can link to several style sheets at
a time. In the event that a competing display
rule appears in more than one file, the one
in the later file takes precedence over the
earlier ones.

You can offer alternate versions of linked
style sheets and let your visitors choose
among them. See “Offering Alternate Style
Sheets,” later in this chapter.

You can limit style sheets to a particular
kind of output by setting the media attribute.
For more details, see “Using Media-Specific
Style Sheets,” later in this chapter.

Previous versions of HTML asked you to
include type="text/css" in your 1link ele-
ment definitions, but HTML5 doesn’t require
it, so you can omit it as | have in the code
examples in this chapter.

Working with Style Sheets 201

Creating an Embedded
Style Sheet

An embedded style sheet is the second
way to apply CSS to a page. It lets you
set the styles directly in the HTML docu-
ment you want to affect (typically it goes
in the head) @). Because the styles are in
that HTML file only, the CSS won’t apply
to other pages like a linked external style
sheet does, and you won’t get the same
caching benefits either. As mentioned ear-
lier, an external style sheet is the recom-
mended approach for most cases, but it’s
important to understand your options for
the times you’ll need to deviate.

o When embedding a style sheet, the style
element and its enclosed style rules typically go in
the head section of your document. The browser
renders your page the same as if the styles were
loaded from an external style sheet 0 Note

that embedded style sheets should never have
the @charset declaration at the beginning (or
anywhere else, for that matter).

<head>
<meta charset="UTF-8" />
<title>El Palau de la Mdsica</title>
<style>
img {
border: 4px solid red;
}
</style>
</head>
<body>

<img src="img/palau250.jpg" width="250"
height="163" alt="El Palau de la
Mdsica" />

<img src="img/tickets.jpg" width="87"
height="163" alt="The Ticket Window" />

</body>
</html>

202 Chapter 8

) El Palau de la Misica - Mogzilla Firefon [=10] x|

Fie Edt View Hishory Bookmarks Jhok Help

| Bl Palou do ba Misica | +| -

Fl Palau de la Musica

Ilove the Palau de la Midsica. It is ornate and gaudy and everything
that was wonderful about modernism. It's also the home of the
Orted Catala, where [learned the benelits of Moscatell

0 The result is exactly the same as if you had
linked to the styles in an external style sheet. The
difference is that no other Web page can take
advantage of the styles used on this page.

To create an embedded style sheet:

1. Type <style> in the head section of
your HTML document.

2. Define as many style rules as desired
(see “Constructing a Style Rule” in
Chapter 7).

3. Type </style> to complete the embed-
ded style sheet @).

Conflicting styles applied in an embed-
ded style sheet override those in external style
sheets if—and only if—the style element
comes after the 1ink element. For more
details, see “The Importance of Location,” later
in this chapter.

Embedded style sheets are the second-
best way to add CSS to your page. (There are
rare exceptions, such as very high-trafficked
sites under certain conditions.) The recom-
mended approach is to load external style
sheets. For more information, see “Creating an
External Style Sheet,” earlier in this chapter.

Though I strongly discourage you from
doing so, you can also apply styles directly to
individual HTML elements. For more details,
see “Applying Inline Styles,” later in this
chapter.

Technically, it is possible to embed a
style sheet in a page’s body too, though avoid
it whenever possible. Mixing your HTML and
CSS breaks a key best practice, which is to
separate content (HTML), presentation (CSS),
and behavior (JavaScript). From a practical
standpoint, it’s easier to maintain your CSS

if it’s in an external style sheet rather than
embedded in your HTML (especially the body).

Working with Style Sheets 203

Applying Inline Styles

Inline styles are the third way to apply CSS
to HTML. However, they are by far the least
desirable option because they intertwine
your content (HTML) and presentation
(CSS), a cruel slap in the face to best
practices @). An inline style affects only
one element @, so you lose one of the key
benefits an external style sheet provides:
Write once and see everywhere. Imagine
having to sift through a slew of HTML
pages to make a simple font color change,
and you can see why inline styles aren’t
intended for regular use.

However, an inline style can be helpful if
you want to try something out quickly as
a test before removing it from your HTML
and placing it in your external style sheet
(assuming you were happy with the test
results), where it’ll be easier to maintain
moving forward.

0 Rules applied inline affect only a single
element; in this case, the first img.

<head>

<meta charset="UTF-8" />

<title>El Palau de la Mdsica</title>
</head>
<body>

<img src="palau250.jpg" width="250"
height="163" alt="El Palau de la
Misica" style="border: 4px solid
red" />

<img src="tickets.jpg" width="87"
height="163" alt="The Ticket Window" />

</body>

</html>

=10/
ble Edt Wew Hstory pookmarks Jools Help

| E1 Palau de la Misica [+] -

El Palau de la Musica

Ilove the Palau de la Misica It is ornate and gaudy and everything
that was wendertul abeout modermsm. It's alse the heme of the
Oirfed Catala, where T learned the benefits of Woscatell

0 Only the first image has a border. To repeat the
effect shown in the rest of this chapter, you'd have
to add style="border: 4px solid red" to every
single img element individually. As you can see,
inline styles are not particularly efficient and would
be a headache to apply and update across a site.

204 Chapter 8

To apply inline styles:

1. Type style=" within the HTML element
that you want to format. (Add it to the
start tag of non-void elements.)

2. Create a style rule without curly brack-
ets or a selector. The selector isn’t nec-
essary since you’re placing it directly
inside the desired element.

3. To create additional style definitions,
type ; (a semicolon) and repeat step 2.

4. Type the final quote mark ".

Be careful not to confuse the equals sign
with the colon. Since they both assign values,
it’s easy to interchange them without thinking.

Don’t forget to separate multiple prop-
erty definitions with a semicolon.

@D Don’t forget to enclose your style defini-
tions in straight quote marks.

Styles applied inline take precedence
over all other styles unless a conflicting style
elsewhere is marked with !important (see
“The Importance of Location” in this chapter).

@D If you specify the font family in an inline
style declaration, you’ll have to enclose multi-
word font names with single quotes in order to
avoid conflict with the style element’s double
quotes. You can’t use the same type of quotes
in both places.

Probably the most common use of inline
styles is applying them to elements from
JavaScript functions as part of making por-
tions of a page dynamic. You may notice these
generated inline styles when looking at the
source of a page in, say, Firebug or Chrome’s
Developer Tools. In most cases, the JavaScript
that applies those is separate from the HTML,
so it still maintains the desired separation

of content (HTML), presentation (CSS), and
behavior (JavaScript).

Working with Style Sheets 205

The Importance
of Location

It's not unusual for more than one style
rule to apply to the same element, par-
ticularly on larger sites that require more
effort to manage the CSS. As mentioned
in “The Cascade: When Rules Collide” in
Chapter 7, a style’s location can break a
tie in the contest between inheritance and
specificity. The basic rule is that, with all
else equal, the later the style appears, the
more precedence or importance it has ()
through @).

So, inline styles have the most precedence
and will override any conflicting styles
applied elsewhere.

In an embedded style element, any
@import rules present will lose out to any
individual style rules that also appear in the
style element (since these must follow the
@import rules, by definition).

The relationship between the embedded
style element and any linked external
style sheets depends on their relative
positions. If the 1ink element comes later
in the HTML code, it overrides the style
element. If it comes earlier, the style
element (and any imported style sheets it
contains) overrides the rules in the linked
style sheet.

0 In this example, the style element comes last.
Therefore, its rules will have precedence over the
rules in the base.css style sheet (as long as the
conflicting rules have the same inheritance and
specificity factors).

<head>
<title>El Palau de la Misica</title>
<link rel="stylesheet"
href="base.css" />
<style>
img {
border-style: dashed;
}
</style>
</head>

£ El Palau de la Misica Mogzilla Fircfon -|0] =]

Fle Edit Miew Higtory Bookmarks Jook Help
| L €1 Poleu de fa Misica |+ -

El Palau de la Musica

Ileve the Palau de la Miisica. It is omate and gaudy and everything
that was wonderfill ahout mademism Tt's alzo the home of the

Orfed Catalad, where [leaned the benefits of Moscatell

0 The style element’s dashed border wins out
over the solid border from the linked base.css.

206 Chapter 8

G Here, the linked style sheet comes last and has
precedence over rules in the style element (all
else being equal).

<head>

<title>El Palau de la Masica</title>

<style>

img {

border-style: dashed;

}

</style>

<link rel="stylesheet" href="base.css"
/>
</head>

E) El Palau de la Miisica - Mozilla Firefon =101 |
Fle Fdit View Hishory Bockmarks Tholke Help
| L €1 polou do o Misica [+ -

Fl Palau de la Musica

Ilove the Palau de la Midsica. It is ornate and gaudy and everything
that was wonderful about modernism. It's also the home of the
Orted Catala, where [learned the benelits of Moscatell

0 The solid border from the base.css style sheet
wins out over the internal style element’s dashed
border.

External style sheets can also contain
@import rules (though, as noted earlier,

| advise not using them, for performance
reasons). In that case, the imported rules
are overridden by the other rules con-
tained in the external style sheet (since, by
definition, they must follow the @import
rule). Their relationship with the docu-
ment’s other style sheets is determined by
the position of the link to the external style
sheet, as usual.

There is one exception to how the order

of conflicting styles affects which one

wins out. A style marked with !important
always wins, whether it’s first in the

order, last, or somewhere in between.
Here’s an example: p { margin-top: 1em
limportant; }. Avoid using it, though. It
makes your declarations too strong, and
your CSS will get bogged down with longer
rules if you need to override it.

The only thing that wins out over a declara-
tion with limportant is a user style sheet.
Yes, you and | as visitors to sites can create
our own style sheet for the browser, and it
takes precedence. For example, we might
always prefer to view certain font sizes or

a level of contrast between the text and
background colors. However, most users
don’t even know they can do this, so it’s
pretty uncommon.

Working with Style Sheets 207

USing Media-specific o Limit the style sheet to a particular output by

adding the media attribute to the 1ink element.

St Ie Sheets In this example, base.css affects the page when
y viewed in the browser (due to media="screen"),

X while print.css affects how the page prints (due
You can designate a style sheet to be used to media="print").

only for a particular output, perhaps only

for printing or only for viewing onscreen in h d
<head>

the browser. For example,‘you might create neta charset="UTF-8" />

one general style sheet with features com- <titlesEl Palau de la Mdsica</titles
mon to both the print and screen versions, <link rel="stylesheet" href="base.css"
and then create individual print and screen media="screen" />

<link rel="stylesheet" href="print.css"
media="print" />
</head>
<body>

style sheets with properties to be used
only for print or screen, respectively.

To designate media-

specific style sheets: <img src="img/palau250.jpg" width="250"

height="163" alt="El Palau de la

1. Add media="output" to the link or Misica" />
style start tags, where output is one <img src="img/tickets.jpg" width="87"
or more of the following: print, screen, height="163" alt="The Ticket Window" />
or all (these are the most common ;./'body>
types, though others exist) @. Separate </html>

multiple values with commas.

2. Alternatively, use the @media at-rule in
your style sheet @. This method does
not require specifying a media type in
the 1ink element.

208 Chapter 8

0 The @media at-rule in a style sheet is another
way to target other media types (see Chapter 12).
This example shows styles affecting all media
types (including print) on top, and print-specific
styles at the bottom. A Print Preview or printout
of a page with this style sheet would show no
images (display: none turns them off) and black,
italicized paragraph text. The font-style: italic
declaration applies to print mode too, since

the print style sheet doesn’t specify a different
font-style.

@charset "UTF-8";

/* Styles for all media */
img {

border: 4px solid red;
}

p{

color: green;
font-style: italic;
}

/* Print Style Sheet */
@media print {
img {
display: none;

}
p{

color: black;

}

The default value for the media attri-
bute is all, so declaring media="all" is
redundant. In other words, you can leave out
the media attribute unless you need to be
specific. Some coders prefer to be explicit by
always including media="all".

There are nine possible output types:
all, aural, braille, handheld, print,
projection, screen, tty, and tv, with vary-
ing degrees of support (most have modest
support). Practically speaking, the ones you
will likely ever use are screen and print (and
perhaps all); each has very wide support. On
the other hand (so to speak), handheld never
got much support from devices, so typically
you’ll use screen instead when designing for
mobile (see Chapter 12). Opera’s projection
mode, Opera Show, supports the projection
type, which is geared toward projectors and
similar views.

See Christian Krammer's article at
www.smashingmagazine.com/2011/11/24/
how-to-set-up-a-print-style-sheet/ to learn
more about creating a print style sheet.

Working with Style Sheets 209

www.smashingmagazine.com/2011/11/24/how-to-set-up-a-print-style-sheet/
www.smashingmagazine.com/2011/11/24/how-to-set-up-a-print-style-sheet/

Offering Alternate
Style Sheets

You can link to more than one style

sheet @) and let visitors choose the styles
they like best. The specifications allow for
a base set of persistent styles @ that are
applied regardless of the visitor’s prefer-
ence, a default or preferred set of addi-
tional styles @ that are applied if the visitor
makes no choice, and one or more alter-
nate style sheets © that the visitor can
choose @, at which point the preferred set
(though not the persistent set) is deacti-
vated and ignored. Alternate style sheets
allow you to provide different themes for
your site.

To offer alternate style sheets:

1. To designate the style sheet that should
be used as a base, regardless of the
visitor’s preferences, use the simple
syntax described in “Linking to External
Style Sheets,” with no title.

2. To designate the style sheet that should
be offered as a first choice, but that can
be deactivated by another choice, add
title="label" to the 1link element,
where label identifies the preferred
style sheet.

3. To designate a style sheet that should
be offered as an alternate choice,
use rel="alternate stylesheet"
title="label" in the 1link element,
where label identifies the alternate
style sheet.

o In order, I've defined the base or persistent
style sheet, the preferred or automatic style sheet,
and an alternative style sheet. Each style sheet
needs its own 1link element.

<head>
<meta charset="UTF-8" />
<title>Palau de la Misica</title>
<link rel="stylesheet"
href="base.css" />
<link rel="stylesheet" href=
"preferred.css" title="Dashed" />
<link rel="alternate stylesheet”
href="alternate.css"
title="Dotted" />
</head>

0 As an example, this CSS file (base.css) will be
the persistent style sheet and will be applied no
matter what the visitor does.

img {
border: 4px solid red;

}

G This style sheet (preferred.css) will be the
one loaded by default in addition to base.css
when the visitor jumps to the page.

img {
border-style: dashed;

}

0 The visitor will be able to load this alter-
nate style sheet if they want. Its file name is
alternate.css, though as is the case with the
others, you can name it as you like.

img {
border-style: dotted;

}

210 Chapter 8

EDEl Palau de la Miisica - Mozilla Firefon il =10]]
File Edit | View History Bookmarks ook Help
| ClPaloue nnihars

l * sidgbar

Adblock Plus: Blockable Tbems CtrH-Shift+y

El Pal

Ilewe the Palan de la Misica. I is omate and gaudy and everything
that was wonderful aboul modermosm. It's also the home of the

Orfed Catald, where I learned the benefits of Moscatell

G When the page is loaded, it has a dashed
border (the preferred value overrides the base
value of solid, but the base color is maintained).
If the visitor were to choose Dotted, the alternate
style sheet would be used instead.

You don’t have to offer a preferred

style sheet in order to provide an alter-

nate style sheet. The example shown could
have the 1ink elements for base.css and
alternate.css only. Similarly, it could link to
preferred.css and alternate.css without
specifying a persistent style sheet. You may
also have more than one alternate style sheet.

Firefox () and Opera offer an easy way
to switch from one style sheet to another.
However, there are JavaScript solutions for
other browsers. Search online for “style sheet
switcher” to find code you can use.

Alternate style sheets were more com-
mon several years ago as a means to allow
users to choose from one of several font sizes.
Nowadays, browsers tend to make it easier to
increase the font size without the assistance
of an alternate style sheet, and many users
are more aware of these features (page zoom
being the primary one).

You can also load style sheets just for
printing your Web page. For details, see
“Using Media-Specific Style Sheets” in this
chapter.

Working with Style Sheets 211

The Inspiration
of Others: CSS

In Chapter 2, you learned how to see the
source code for a Web page. Viewing
someone’s CSS is not much more difficult.

To view other designers’ CSS code:

1. First view the page’s HTML code @. For
more details on viewing HTML source
code, see “The Inspiration of Others” in
Chapter 2.

If the CSS code is in an embedded style
sheet, you'll be able to see it already.

2. Ifthe CSSis in an external style sheet,
locate the reference to it in the HTML
and click the file name). The style
sheet displays in the browser win-
dow @. You can copy it from there and
paste it into your text editor if you like.

As with HTML, use other designers’

code for inspiration, then write your own style
sheets. View their code with a careful eye,
though. Just because it’s on the Web doesn’t
mean it’s always an example of the best way
to code a particular effect, despite the author’s
best intentions.

Modern browsers allow you to click

the style sheet name in the HTML source, as
shown in the figures. To view a style sheet in
an older browser, you may need to copy the
URL shown in the 1ink element, paste it in
the address bar of your browser (replacing
the HTML file name), and hit Enter. If the style
sheet’s URL is a relative address (see “URLs”
in Chapter 1), you may have to reconstruct
the style sheet’s URL by combining the Web
page’s URL with the style sheet’s relative URL.

The developer tools offered in modern
browsers also allow quick access to viewing
a page’s CSS. They come bundled with most
browsers, and there’s an extension called
Firebug for Firefox (see Chapter 20).

F)wource of: http:/ /bruceontheloose.com,/htmie
(Dl Cdt Yen Lelo

< E 2
<html lang="ecn'">
<head>

lofx

I

«meta charget="UTF-3" [
<titlerEl Palau de la Misica</title>

¢link rel-"otylecheet" href-"baog.caa" />
</head: é]

<hudys
<artiolex
<h1>El Palau dc la Musicad/hi>

Cimg see="imgd palas? S0, jpg®™ widlh="2 50"
height="163" alt 1 Palau de la MNasica™ f»> g

<1my ero=Timg/tickets. Jpg"™ width="gr
height="163" alt-"The Ticket Window® />

<p>I love the <span lang="es":Palau ds la
Husica</epan>. 1t 12 ornate and gaudy and everything ;i

| &

o View the source code for the HTML page that
contains the style sheet you want to view, and
click the style sheet file name.

f:"]bwrcenf:htl[:,f'f'hru:eomhdwse.l: /htmilcss " _ ﬂg’ﬂ

e Bk Yew ek

BEcharset "UTF-87;
/* & simple style sheet */
dmg §

border: 4px solid red;

1

I 4

0 The style sheet displays in the browser
window.

212 Chapter 8

As you saw in “Constructing a Style Rule”
in Chapter 7, there are two principal parts
of a CSS style rule. The selector deter-
mines which elements the formatting will
be applied to, and the declarations define
just what formatting will be applied. In this
chapter, you'll learn how to define CSS
selectors.

While the simplest selectors let you format
all the elements of a given type—say, all
the h1 headings—more complex selectors
let you apply formatting rules to elements
based on their class or id, context, state,
and more.

Once you've defined the selectors, you
can go on to create the declarations

(with actual properties and values) in
Chapters 10-14. Some more-specialized
style properties are discussed throughout
the rest of this book. Until then, you’ll use
the very simple and relatively obvious
{color: red;} in the examples.

Defining Selectors

In This Chapter

Constructing Selectors

Selecting Elements by Name

Selecting Elements by Class or ID
Selecting Elements by Context
Selecting Part of an Element

Selecting Links Based on Their State
Selecting Elements Based on Attributes
Specifying Groups of Elements
Combining Selectors

Selectors Recap

214
216
218
221
227
230
232
236
238
240

Constructing Selectors

The selector determines which elements

a style rule is applied to. For example, if
you want to format all p elements with the
Times font, 12 pixels high, you’d need to
create a selector that identifies just the p
elements while leaving the other elements
in your code alone. If you want to format
the first p in each section with a special
indent, you’ll need to create a slightly more
complicated selector that identifies only
those p elements that are the first element
in their section of the page.

A selector can define up to five different
criteria for choosing the elements that
should be formatted:

m The type or name of the element @.

m The context in which the element is
found ©.

m The class or id of an element

(@ and ©).

m The pseudo-class of an element or a
pseudo-element @ (I'll explain both of
those, | promise).

m Whether or not an element has certain
attributes and values @.

Name of desired element
L
h1 {

color: red;

0 The simplest kind of selector is simply the
name of the type of element that should be
formatted—in this case, the h1 element.

Context
Name of desired element

-
hi em {

color: red;

0 This selector uses context. The style will only
be applied to the em elements within h1 elements.
The em elements found elsewhere are not
affected.

Class

l_|_|
wvery {

color: red;

ID
l_|_|
#gaudi {

color: red;

G The first selector chooses all elements that
belong to the very class. In other words, any
element with class="very" in its HTML start tag.
The second selector chooses the one element
with an id of gaudi, as specified by id="gaudi"
in its HTML start tag. You'll recall that an id may
appear once in each page, whereas a class may
appear any number of times.

214 Chapter 9

Name of desired element
Class

em.very {

color: red;

Name of desired element

ID
l_|_|
articletigaudi {

color: red;

0 You can be more specific by prefixing a class
or id selector with the element name to target.

In this case, the first selector chooses only the em
elements with the very class rather than every
element with the very class. Similarly, the second
selector chooses the one article element with
an id of gaudi. In general, don’t use this approach
unless you have to; the less specific selector in the
previous example G is preferred.

Name
l Pseudo-class
l_l_l

a:link {

color: red;

G In this example, the selector chooses a elements
that belong to the 1ink pseudo-class (that is, the a
elements that haven’t yet been visited).

Name
Attribute

a[name] {

color: red;

o You can use the square brackets to add
information to a selector about the desired
element’s attributes, values, or both.

Selectors can include any combination

of these in order to pinpoint the desired
elements. Mostly, you use one or two at a
time. In addition, you can apply the same
declarations to several selectors at once if
you need to apply the same style rules to
different groups of elements (see “Speci-
fying Groups of Elements,” later in this
chapter).

The rest of this chapter explains exactly
how to define selectors.

Defining Selectors 215

Selecting Elements
by Name

Perhaps the most common criterion for
choosing which elements to format is the
element’s name or type. For example, you
might want to make all of the h1 elements
big and bold and format all of the p ele-
ments with a sans-serif font.

Q This HTML code has two h2 elements. (In case you’re wondering, the lang attribute indicates that the
content is in a different language than the page’s default language, which is specified on the html element
that follows the DOCTYPE at the beginning of each page. In this case, 1lang="es" on each h2 indicates that
their content is in Spanish.)

<IDOCTYPE html>
<html lang="en">
<head>

</head>
<body>

<article class="about">
<h1>Antoni Gaudi</h1>

<p>Many tourists are drawn to Barcelona to see Antoni Gaudi's incredible architecture.</p>
<p>Barcelona celebrated the 150th
anniversary of Gaudi's birth in 2002.</p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work was essentially useful. La Casa Mila is an apartment
building and real people live there.</p>
</section>

<section class="project">
<h2 lang="es">La Sagrada Familia</h2>
<p>The complicatedly named and curiously unfinished Expiatory Temple of the Sacred Family is
the most visited building in Barcelona.</p>
</section>
</article>

216 Chapter 9

0 This selector will choose all the h2 elements in
the document and make them red G

h2 {
color: red;

}

1) Antoni Gaudi - Introduction - Mozilla’§ 4 -0l x|
File Edit ¥iew History Bookmarks Tools Help

|| Antoni Gaudi - Introduction l ar | =

Antoni Gaudi

Many tounsts are drawn to Barcelona to see Antom
Gandi's incredible architecture.

EBarcelona celebrated the 150th anmversary of Gaudi's
birth in 2002

La Casa Mila

Gandi's work was essentially usefil La Casa Mild 15 an
apartment building and real people live there.

La Sagrada Familia
The complicatedly named and curicusly unfimshed

Espaatory Temple of the Sacred Farnily 15 the most visized
bulding i Barcelona.

G All the h2 elements are colored red.

To select elements to format
based on their type:

Type selector, where selector is the
name of the desired type of element, with-
out any attributes @.

Unless you specify otherwise (using the
techniques in the rest of this chapter), all the
elements of the specified type will be format-
ted, no matter where they appear in your
document.

Not all selectors need to specify an ele-
ment’s name. If you want to apply formatting
to an entire class of elements, regardless of
which type of elements have been identified
with that class, you’d want to leave the name
out of the selector. The next section explains
how to do this.

The wildcard, * (asterisk), matches any
element name in your code. For example,

* { border: 2px solid green; } gives every
element a two-pixel, green, solid border!

You can choose a group of element
names for a selector by using the comma

to separate them. For more details, consult
“Specifying Groups of Elements,” later in this
chapter.

Defining Selectors 217

Selecting Elements
by Class or ID

If you've labeled elements with a class @)
or an id (see Chapter 3), you can use

that criterion in a selector to apply format-
ting to only those elements that are so
labeled ©.

Q There are two article elements with a class of about. A short paragraph without the class is in
between them.

<article id="gaudi" class="about">
<h1>Antoni Gaudi</h1>

<p>Many tourists are drawn to Barcelona to see Antoni Gaudi's incredible architecture.</p>
<p>Barcelona celebrated the 150th
anniversary of Gaudi's birth in 2002.</p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work was essentially useful. La Casa Mila is an apartment
building and real people live there.</p>
</section>
</article>

<p>This paragraph doesn't have <code>class="about"</code>, so it isn't red when the CSS is
applied.</p>

<article class="about">
<h1>L1uis Doménech i Montaner</h1>

<p>Lluis Domenech i Montaner was a contemporary of Gaudi.</p>

</article>

218 Chapter 9

0 This selector will choose the elements with a
class equal to about. In this case, they’re both
article elements, but you could apply the classes
to any elements. If you wanted to apply the style
only when an article element has this class, you
would write the selector as article.about. But
that’s more specific than you’ll usually need to be.

.about {
color: red;
}

) Barcelona's Architects - Mozilla Firefox o] |
File Edit Miew History Bockmarks Tools Help

+ | b

| | Barcelona's Architects

Antoni Gaudi

Barcelona celebrated the 150th anmversary of Gaudi's birth
in 2002

La Casa Mila

Gaudi's work was eccentially usefiul La Casa Mildis an
apartment bulding and rea! peaple lve there

La Sagrada Familia

v named and curiously unfinished
t v Temple of the Sacred Family is the most vistied
building i Barcelona.

This paragraph doesn't have class="about", so tin't
red when the C33 is applied.

Lluis Doménech i Montaner

Liuis Domeénech 1 hontaner was a contemnporary of Gaudi

0 The article with the about class is displayed
in red, but the p element at the end of the page is
not. (In case you’re wondering, the link is in blue
because of the browser’s default styles, but you
can write your own rule to override it.)

To select elements to format
based on their class:

1. Type . (a period).

2. With no intervening space, immediately
type classname, where classname
identifies the class to which you’d like
to apply the styles.

To select elements to format
based on their id:

1. Type # (a hash or pound sign).

2. With no intervening space, immediately
type id, where id uniquely identifies
the element to which you’d like to apply
the styles.

You can use class and id selectors
alone or together with other selector criteria.
For example, .news { color: red; } would
affect all elements with the news class, while
hi.news { color: red; } would affect only
the h1 elements with the news class. It’s
best to omit the element name from an id or
class selector unless you have to target it
specifically.

continues on next page

Defining Selectors 219

Notice in) and () that | used a class
name (about) that conveys the meaning of the
content to which it’s applied rather than call-
ing it red. It’s best to avoid creating a class
name that describes how something looks,
because you might change the styles later,

like making the text green in this case. And
classes add semantic value to your HTML like
elements do.

If the example in () were written instead
as #gaudi { color: red; }, only the text in
the first article would be red, because it’'s
the only one with id="gaudi". Each id must
be unique, so you can’t reuse that id on the
article about Lluis Doménech i Montaner.

For more information on assigning
classes to elements in the HTML code, con-
sult “Naming Elements with a Class or ID” in
Chapter 3.

Class Selectors vs. ID Selectors

When deciding between class selectors and id selectors, | suggest using classes whenever
possible, in large part because you can reuse them. Some advocate not using ids at all, an argu-
ment | understand, though ultimately the choice comes down to you as you develop your sites. It's
a subject that can yield some pretty strong opinions on both sides. In any case, here are two of the

issues that id selectors introduce:

= Their associated styles can’t be reused on other elements (remember, an id may appear on
only one element in a page). This can lead to repeating styles on other elements, rather than

sharing them via a class.

m They are far more specific than class selectors. This means that if you ever need to override
styling that was defined with an id selector, you’ll need to write a CSS rule that’s even more
specific. A few of these might not be hard to manage, but once you’re working on a site of a
decent size, your CSS can get longer and more complicated than necessary.

Those two points probably will become more clear to you as you work with CSS more. (On the flip
side, one reason some people like using ids is so they’ll know at a glance if an element is unique.)

So, | recommend looking for opportunities to combine shared styles into one or more classes so
you can reuse them, and to keep id selectors to a minimum if you do use them (see the sample
page in Chapter 11 for an example of how you could do this). You may find your style sheets shorter

and easier to manage.

220 Chapter9

o I've shortened the text to make the relation-
ships between elements easier to see. Each
indentation represents a generation. Note that

in this snippet there are two second-generation

p elements directly within the article with the
about class, and one third-generation p element
within the project sections (within the article).
There’s another third-generation p in the full
code, not shown. The h2 instances are also third
generation.

<article class="about"»
<h1>Antoni Gaudi</h1>

<p>Many tourists ... </p>
<p>Barcelona ... </p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work ... </p>
</section>

<section class="project">
<h2 lang="es">La Sagrada Familia</h2>
</section>
</article>

0 The space between article.about and p
means that this selector will find any p element
that is a descendant of articles with the about
class, regardless of its generation. However,
prefixing the class (or especially an id) with the
element name is usually more specific than you
need to be in practice. See the next example for
less-specific selectors

article.about p {
color: red;

}

Selecting Elements
by Context

In CSS, you can pinpoint elements depend-
ing on their ancestors, their parent, or their
siblings (see “Parents and Children” in
Chapter 1) (@) through ©).

An ancestor is any element that contains
the desired element (the descendant),
regardless of the number of generations
that separate them.

G There is often more than one way to craft your
selectors to get the desired effect. It comes down
to how specific you need to be. The selector in the
first example here (article p { }) is less specific
than both the one that follows it (.about p { }) and
the one in (). The second example here combines
a class selector with a descendant selector; you
can combine with id selectors, too. You'll find
yourself using these all the time rather than the
more specific and verbose model in

/* Other ways to get the same effect
______________________________________ */

/* Any p that is a descendant of any article.
The least specific approach. */
article p {
color: red;

}

/* Any p that is a descendant of any element
with the about class. The second most
specific of the three. */

.about p {

color: red;
}

Defining Selectors 221

To select an element to format
based on its ancestor:

1. Type ancestor, where ancestor is the
selector for the element that contains
the element you wish to format.

2. Type a space.

3. If necessary, repeat steps 1and 2
for each successive generation of
ancestors.

4. Type descendant, where descendant is
the selector for the element you wish to
format.

A selector based on an element’s ances-
tor had been known as a descendant selector,
but CSS3 renamed it a descendant combina-
tor. (Some people still say “selector.”)

Don’t be thrown off by the article
.about portion of the example (:). Remember
that it simply means “the article whose
class is equal to about.” So article.about
p means “any p element that is contained in
the article element whose class is equal
to about.” By comparison, the less-specific
.about p means “any p element that is con-
tained in any element whose class is equal to
about” (9. That’s because id selectors in this
context are more specific than element and
class selectors.

¥)) antoni Gaudi - Introduction - Mozilla| O
Fle Edit Y¥iew History Bookmarks Tools Help
L+ :

=101 x|

| | Ankoni Gaud - Introduction

Antoni Gaudi

celona celebrated the 150th anniversary of Gaudi's birth
002,

La Casa Mila

0 All the p elements that are contained within
the element with the about class are red even
if they’re also within other elements within the
element with the about class. Each of the style
rules in and yield the result shown here.

222 Chapter 9

G This selector will only choose those p elements
that are children (not grandchildren, great
grandchildren, and so on) of article elements
with the about class. In order to qualify, they may
not be contained within any other element.

article.about > p {
color: red;
}

1) antoni Gaudi - Introduction - Mozilla Firefo: o [m] 5

File Edit Y¥iew History Bookmarks Tools Help

| L) Antoni Gaudi - Introduction | T | -

Antoni Gaudi

I i to Barcelona to see Antont
Gandi's mcredible architecture

Barcelona celebrated the 150th antuversary of Gandi's birth
in 2002,

La Casa Mila

Gandi's work was essentially useful. La Casa Milé 15 an
apartment building and real peopie live there.

La Sagrada Familia

The compheatedly named and curiously unfinished
Expratory lemple of the Sacred Famuly 15 the smost visited
building in Barcelona

o Only the first two p elements are children of the
about class article. The two other p elements
are children of the section elements within the
article. For the HTML code used in this example,
see

The previous examples showed descen-
dant combinators. CSS also has child
combinators, which allow you to define a
rule for an immediate descendant (in other
words, a child) of a parent element. You
may know them as child selectors, the pre-
CSS3 terminology. A parent is an element
that directly contains another element (a
child), meaning they are only one genera-
tion away.

To select an element to format
based on its parent:

1. Type parent, where parent is the selec-
tor for the element that directly contains
the element you wish to format.

2. Type > (the greater than sign) @.

3. If necessary, repeat steps 1and 2 for
each successive generation of parents.

4. Type child, where child is the selector
for the element you wish to format.

Just as you saw with the descendant
combinator, you can omit the element name
before the class. In fact, | recommend it
(unless you need the extra specificity to
achieve the desired styling). For example,
.about > p { color: red; } yields the same
effect in this case. Or, to be even less specific,
leave out the class entirely, as in article >
p { color: red; }. Use these simpler forms
whenever possible before resorting to more-
specific ones. Some of the examples that
follow in the rest of the chapter could be sim-
plified in a similar manner. Now that you have
a taste for how it’s done, | won't call out these
alternatives, but keep in mind that generally it
is best to be less specific to keep your styles
easier to reuse.

You may also use id selectors in child
combinators, though | recommend using less-
specific selectors like element type or class
whenever possible.

Internet Explorer 6 doesn’t support the
child selector.

Defining Selectors 223

It's sometimes useful to be able to select
only the first child of an element, as
opposed to all the children of an element.
Use the :first-child pseudo-class to
achieve this (@ through @).

To select an element to format
that is the first child of its parent:

1. Optionally, type parent, where parent
is the selector for the desired element’s
parent.

2. If you included a parent in step 1, type
a space followed by > followed by
another space.

3. Optionally, type the selector that rep-
resents the first child you want to style
(for example, p or .news).

4. Type :first-child (just like that)
(Note that you don’t have to specify a
parent in step 1. For instance, p:first-
child { font-weight: bold; } would
make any paragraph that is the first
child of any element bold.)

@ The :first-child pseudo-selector chooses
only the first child of an element, not the first
instance of an element that is a child. So, although
you might be inclined to think the rule shown will
make the first paragraph in the sample page red,
it won’t (4F), because the h1 is the first child of the
article that has the about class assigned to it.
For the HTML code used in this example, see

/* You might think this will make the first
paragraph red, but it won’t! */

.about > p:first-child {
color: red;

}

&) Antoni Gaudi - Introduction - Mozilla F o =]}
File Edit View History Bookmarks Tools Help

| || Antoni Gaudi - Introduction | + | -

|»

Antoni Gaudi

Many tourists are drawn to Barcelona to see Antont
Gandi's incredible architecture.

Barcelona celebrated the 150th anniversary of I
Gaudi's birth in 2002,

La Casa Mila

Gaudi's work was essentially useful La Casa Mila is

0 The rule has no effect on the page, because
there isn’'t a p element that’s the first child of an
element with the about class.

224 Chapter 9

0 This selector chooses only the h1 element that
is the first child of elements with class="about"
assigned in the HTML. This rule does affect the
display of our page o

/* h1 is the first child, so this works. */

.about > hi:first-child {
color: red;

}

=10l x|

) Antoni Gaudi - Introduction - Mozilla f

File Edit View History Bookmarks Tools Help

| || Antoni Gaudi - Intraduction | + |

|»

Antoni Gaudi

Ilany tounists are drawn to Barcelona to see Anton
Gaudi's incredible architecture.

Barcelona celebrated the 150th anmversary of =
Gaudi's birth in 2002

La Casa Mila
=l

Gaudi's work was ezsentially useful La Caza Mila is

0 The h1 element contained in the article is red
because it’s the first child of an element with the
about class. If there were other h1 elements inside
the article, they wouldn’t be red.

Continuing with the familial theme, sibling
elements are elements of any kind that
are children of the same parent. Adjacent
siblings are elements that are next to
each other directly, meaning no other
sibling sits between them. In the following
crude example, the h1 and p are adjacent
siblings, and the p and h2 are adjacent sib-
lings, but the ha and h2 are not. However,
they are all siblings (and children of the
body element):

<body>
<h1>...</h1>
<p>...</p>
<h2>...</h2>

</body>

</html>

Defining Selectors 225

The CSS adjacent sibling combinator
allows you to target a sibling element that
is preceded immediately by a sibling you
specify. (See the last tip regarding the
general sibling combinator, new in CSS3.)

To select an element to format
based on an adjacent sibling:

1. Type sibling, where sibling is the
selector for the element that directly
precedes the desired element within
the same parent element. (They don’t
have to be the same element type as
long as they are directly next to each
other, as explained previously.)

2. Type + (a plus sign).

3. If necessary, repeat steps 1and 2 for
each successive sibling.

4. Type element, where element is the
selector for the element you wish to
format @.

Also see “Parents and Children” in
Chapter 1.

The :first-child part of the selector
is called a pseudo-class, because it identifies
a group of elements without you (the designer
or developer) having to mark them in the
HTML code.

Neither the :first-child nor adjacent
sibling selectors are supported by IE 6.

CSS3 introduces the general sibling com-
binator, which allows you to select a sibling
that is not necessarily immediately preceded
by another sibling. The only difference in syn-
tax from an adjacent sibling combinator is that
you use a ” (tilde) instead of a + to separate
the siblings. For instance, hi~h2 { color:
red; } would make any h2 element red as
long as it is preceded by a sibling h1 some-
where within the parent (it could be immedi-
ately adjacent, but it doesn’t have to be).

o This adjacent sibling combinator chooses only
those p elements that directly follow a sibling p
element.

.about p+p {
color: red;
}

¥ Antoni Gaudi - Introduction - Firel
File Edit ‘iew History Bookmarks Tools Help
L+ ;

~lofx|

| || Antoni Gaudi - Introduction

|»

Antoni Gaudi

Ilany tourists are drawn to Barcelona to see Antom
Gandi's meredible architecture.

Barcelona celebrated the 150th anmwversary of L
Gaudi's birth in 2002

La Casa Mila

Gaudi's work was essentially useful. La Casa Mila is

o Only the p elements that directly follow a
sibling p element are red. If there were a third,
fourth, or more consecutive paragraphs, they too
would be red. For example, an adjacent sibling
combinator would be useful for indenting all
paragraphs except the first.

226 Chapter 9

o There’s no telling which words will be affected
by first-line until you view the page in the
browser and see how the content flows. It's not
determined by what line the words are on in the
HTML itself.

<article class="about"»
<h1>Antoni Gaudi</h1>

<p>Many tourists are drawn to Barcelona
to see Antoni Gaudi's incredible
architecture.</p>

<p>Barcelona <a href="http://
www.gaudi2002.bcn.es/english/"
rel="external">celebrated the 150th
anniversary of Gaudi's birth in
2002.</p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work was essentially
useful. La Casa
Mila is an apartment
building and real people
live there.</p>
</section>

<section class="project">
<h2 lang="es">La Sagrada Familia</h2>
<p>The complicatedly named and
curiously unfinished Expiatory
Temple of the Sacred Family is the
most visited building in
Barcelona.</p>
</section>
</article>

0 Here the selector will choose the first line of
each p element.

p:first-line {
color: red;

}

Selecting Part of
an Element

You can also select just the first letter or
first line of an element and then apply
formatting to that.

To select the first line of an element:

1. Type element, where element is the
selector for the element whose first line
you’d like to format.

2. Type :first-line to select the entire
first line of the element referenced in
step 1.

[2o o vt st EE T vt o oo A=

B [e ety Gubmets Qo b0 B [e Mgy Bocknwls Juk

+ - Askerd i - Irdrnduction

kel v - nbrsdacton |

Antoni Gaudi Antoni Gaudi

i Gaud's incredkle

s buth i 2002

sa Mila

aparment

La Sagrada Familia

G Adjusting the width of the window changes
the content of the first lines (and thus, what is
formatted).

Defining Selectors 227

To select the first letter
of an element:

1. Type element, where element is the
selector for the element whose first line
you’d like to format.

2. Type :first-letter to select the first
letter of the element referenced in
step 1.

According to the CSS specifications,
punctuation that precedes the first letter
should be included in the selector. Modern
browsers support this, but older versions of IE
don’t. Instead, they consider the punctuation
itself as the first letter.

Only certain CSS properties can

be applied to :first-letter pseudo-
elements: font, color, background,
text-decoration, vertical-align (as
long as the :first-letter is not floated),
text-transform, line-height, margin,
padding, border, float, and clear. You'll
learn about all these in Chapters 10 and 11.

You may combine the :first-letter or
:first-line pseudo-elements with more-
complicated selectors than those used in

this example. For example, if you wanted to
select just the first letter of each paragraph
contained in the elements with the project
class, your selector would be .project
p:first-letter.

0 Here the selector will choose just the first letter
of each p element. For the corresponding HTML
code, see o

p:first-letter {
color: red;

}

Antoni {

Idany tourists are

Anton Gaudi's in
o The first-letter
selector could conceivably
a4 be used to create drop caps
Gaudi's birth in 2 (once you've learned more

Barcelona celebrg

properties besides color).

228 Chapter 9

Pseudo-Elements, Pseudo-Classes, and CSS3's
::first-line and :: first-letter Syntax

In CSS3, the syntax of :first-lineis ::first-line and :first-letteris ::first-letter. Note
the double colons instead of single colons.

The intent of this change was to distinguish the four pseudo-elements—::first-line, ::first-
letter, ::before, ::after—from pseudo-classes like :first-child, :1ink, :hover, and more.

A pseudo-element is one that doesn’t exist as an element in the HTML. For instance, you don’t
mark up your first letter or first line of text with HTML that defines it as such. Instead, they are con-
tent that’s part of another element, like the p elements in the example.

A pseudo-class, on the other hand, does apply to an HTML element. You saw that with :first-
child, which selects the specified element that is the first child of its parent element.

The double-colon syntax of ::first-line and ::first-letter is preferred moving forward, and
modern browsers support it. The original, single-colon syntax is deprecated, but browsers con-
tinue to support it for backward compatibility. However, no version of Internet Explorer prior to IE9
supports the double colon, so you may decide to continue using the single-colon syntax unless
you serve different CSS to IE8 and below.

Defining Selectors 229

Selecting Links Based
on Their State

CSS lets you apply formatting to links
based on their current state; that is,
whether the visitor is hovering their cursor
on top of one, whether a link has been vis-
ited, or whatever. You achieve these with a
series of pseudo-classes.

To select links to format
based on their state:

1. Type a (since a is the name of the ele-
ment for links).

2. Type : (a colon).

3. Type link to change the appearance
of links that haven’t yet been or aren’t
currently being activated or pointed at.

Or type visited to change links that
the visitor has already activated.

Or type focus if the link is selected
via the keyboard and is ready to be
activated.

Or type hover to change the appear-
ance of links when pointed to.

Or type active to change the appear-
ance of links when activated.

o You can’t specify in the code what state a link
will have; it’s controlled by your visitors. Pseudo-

classes allow you to access the state and change
the display as you please.

<p>Many tourists are drawn to Barcelona
to see Antoni Gaudi's incredible
architecture.</p>

<p>Barcelona <http://www.gaudi2002.
bcn.es/ english/">celebrated the
150th anniversary of Gaudi's birth
in 2002.</p>

0 Styles for links should always be defined in this
order, to avoid overriding properties when a link is
in more than one state (say, visited and hovered).

a:link {
color: red;

}

a:visited {
color: orange;
}

a:focus {
color: purple;

}

a:hover {
color: green;

}

a:active {
color: blue;
}

230 Chapter9

ATCNICCITT,
Barcelona celebrated

I E n[-I\

dICTHICCTOTE .

Barcelona

T £ ALY

dICTHICCTOTE .

ATCNIECITT,
Barcelona celebrated

I i) n[..\

dICTHICCTOTE .

Barcelona elebpated

@ Links will be red
when new and not
visited.

0 Once the link has
been visited, it turns
orange.

O it the link gets the
focus (such as with the
Tab key), it is purple.

o When the visitor
hovers over the link
with the pointer, it is
green.

@ As the visitor
activates the link, it
turns blue.

You may also apply the :active and
:hover pseudo-classes to other elements.
For instance, p:hover { color: red; }
would change the color of each paragraph to
red when you hover over it. (If you’re keep-
ing score, this works in Internet Explorer 7
and above, but not in IE6. Neither IE6 nor IE7
supports :active on elements besides a. All
other browsers support both features.)

Since a link can be in more than one
state at a time (say, simultaneously active

and hovered above) and later rules override
earlier ones, it’s important to define the rules
in the following order: 1ink, visited, focus,
hover, active (LVFHA). One popular way to
remember this is the mnemonic “Lord Vader’s
Former Handle Anakin.” Some argue for order-
ing the rules LVHFA instead; it works too.

Defining Selectors 231

Selecting Elements
Based on Attributes

You can also apply formatting to those
elements that have a given attribute or
attribute value.

To select elements to format
based on their attributes:

1. Type element, where element is the
selector for the element whose attri-
butes are in question.

2. Type [attribute, where attribute is
the name of the attribute that an ele-
ment must have to be selected.

3. Type ="value" if you want to specify
the value that the attribute’s value must
equal for its element to be selected.

Or type ~="value" to specify an exact
value that the attribute’s value must
contain (along with other content

Q For demonstration purposes, I've changed the class value on the second section element from
project to work.

<article class="about">
<h1>Antoni Gaudi</h1>

<p>Many tourists are drawn to Barcelona to see Antoni Gaudi's incredible architecture.</p>
<p>Barcelona celebrated the 150th
anniversary of Gaudi's birth in 2002.</p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work was essentially useful. La Casa Mila is an apartment
building and real people live there.</p>
</section>

<section class="work">
<h2 lang="es">La Sagrada Familia</h2>
<p>The complicatedly named and curiously unfinished Expiatory Temple of the Sacred Family is
the most visited building in Barcelona.</p>
</section>
</article>

232 Chapter 9

0 The square brackets enclose the desired
attribute and any desired value. In this case, the
value is omitted in order to select any section with
any class attribute.

section[class] {
color: red;

}

) Antoni Gaudi - Introduction - Mozilla Firefos []
File Edit ¥iew History EBookmarks Tooks Help
L+ z

| || Antoni Gaudi - Introduction

Antoni Gaudi

Many tounsts are drawn to Barcelona to see Antont
Gandi's meredible architecture.

Barcelona celebrated the 150th anmiversary of Gaudi's barth
in 2002,

La Casa Mila

di's work was essentially useful. La Casa Iila 15 an
apartment bulding and real people Ive

there.

La Sagrada Familia

ing i Barcelona

0 Every section element that contains a class
attribute, regardless of the class’s value, is red.

space-separated values) for its element
to be selected. It matches a complete
word, not part of a word.

Or type |="value" (that was the pipe
symbol, not a “1” or the letter “I”) to
specify that the attribute’s value must
be equal to value or begin with value
(that is, what you typed followed by a
hyphen) in order for its element to be
selected. (This is most common when
searching for elements containing the
lang attribute.)

Or type *="value" to specify that the
attribute’s value must begin with value
as either a full word or substring (new in
CSS3; see the tip in this section).

Or type $="value" to specify that the
attribute’s value must end with value as
either a full word or substring for its ele-
ment to be selected (new in CSS3; see
the tip in this section).

Or type *="value" to specify that the
attribute’s value must contain at least
one instance of the value substring

for its element to be selected. In other
words, value doesn’t need to be a com-
plete word in the attribute’s value (new
in CSS3; see the tip in this section).

4. Type].

Selecting elements based on the attri-
butes (and values) they contain is supported
by all current major browsers (including

IE as of version 7). IE7 and IE8 have a few
quirks related to the three attribute selec-
tors noted in step 3 as being new in CSS3.
See http://reference.sitepoint.com/css/
css3attributeselectors for more information.

Defining Selectors 233

http://reference.sitepoint.com/css/css3attributeselectors
http://reference.sitepoint.com/css/css3attributeselectors

More Attribute Selector Examples

Attribute selectors are pretty powerful. Here are a few more examples to demonstrate some of the
diverse ways in which you can use them.

m This selects any a element with a rel attribute equal to external (it has to be an exact match).

a[rel="external"] {
color: red;

}

m |magine you have one section element with two classes, such as <section class="project
barcelona"s, and another that has one, <section class="barcelona"y. The ~= syntax tests
for a partial match of a complete word within a whitespace-separated list of words, making both
elements red in this case.

section[class~="barcelona"] {
color: red;

}

/* This would also match because this selector matches partial
strings (complete words not required). */
section[class*="barc"] {
color: red;

}

/* This would NOT match because barc is not a full word in the
whitespace-separated list. */

section[class~="barc"] {
color: red;

}

= This selects any h2 with a 1ang attribute that begins with es. There are two instances of these
in the HTML code example @.
h2[1lang|="es"] {
color: red;

}

234 Chapter 9

More Attribute Selector Examples (continued)

m By using the universal selector, this selects any element with a 1ang attribute that begins
with es. There are three instances of these in the HTML code example
*[1ang|="es"] {
color: red;

}

= Combining a couple of the methods, this selects any a element with both any href attribute
and any title attribute containing the word howdy.
a[href][title~="howdy"] {
color: red;

}

m As a less precise variation of the previous one, this selects any a element with both any href
attribute and any title attribute containing how as a complete word or a substring (it matches
if the title’s value is how, howdy, show, and so on, regardless of where in the value how appears).

a[href][title*="how"] {
color: red;

}

m This matches any a element with an href attribute value that begins with http://.

a[href ="http://"] {
color: orange;

}

m This matches any img element with a sxc attribute value of exactly logo.png.

img[src="logo.png"] {
border: 1px solid green;

}

m This is less specific than the previous one, matching any img element with a src attribute value
that ends with .png.

img[src$=".png"] {
border: 1px solid green;

}

That’s by no means the limit of what you can do, but hopefully it inspires you to explore further.

Defining Selectors 235

Specifying Groups
of Elements

It's often necessary to apply the same style
rules to more than one element. You can
either reiterate the rules for each element,
or you can combine selectors and apply
the rules in one fell swoop. Of course,

the latter approach is more efficient and
generally makes your style sheets easier to
maintain.

To apply styles to groups
of elements:
1. Type selectori, where selector1

is the name of the first element that
should be affected by the style rule.

2. Type , (a comma).

3. Type selector2, where selector2 is
the next tag that should be affected by
the style rule.

4. Repeat steps 2 and 3 for each addi-
tional element.

o The code contains one h1 and two h2
elements.

<article id="gaudi" class="about">
<h1>Antoni Gaudi</h1>

<p>Many tourists are drawn ...</p>
<p>Barcelona ...</p>

<section class="project">
<h2 lang="es">La Casa Mila</h2>
<p>Gaudi's work was ...</p>
</section>

<section class="project">
<h2 lang="es">La Sagrada Familia
</h2>
<p>The complicatedly named ...</p>
</section>
</article>

236 Chapter 9

0 You can list any number of individual selectors
(whether they include element names, ids, or
classes), as long as you separate each with a
comma. Each selector doesn’t have to be on its
own line as shown, but many developers use this
convention to make it easier to read. The benefit is
more obvious when the selectors are longer.

hi,
h2 {
color: red;

}

¥2) antoni Gaudi - Introduction - Mozilla efox o =] 5]
File Edkt ‘Wew History Bookmarks Tools Help

| || Antoni Gaudi - Introduction

Antoni Gaudi

Mlany tourists are drawn to Barcelona to see Antom
Gandi's incredible architecture.

Earcelona celebrated the 150th anmiversary of Gandi's
birth in 2002,

La Casa Mila

Gandi's worl: was essentially uzeful La Casa Wil 15 an
apartment bullding and real peaple live there.

La Sagrada Familia
The complicatedly named and cunously unfinished

Espaatory Temple of the Sacred Family is the smost visited
bulding in Barcelona

0 The h1 and h2 elements are colored red with a
single rule.

Styling elements as a group is nothing
more than a handy shortcut. The rule h1, h2
{ color: red; } is precisely the same as the
two rules

hi { color: red; } and h2 { color: red; }.

You can group any kind of selector,
from the simplest (as shown in 0) to the
most complex. For example, you could use
hi, .project p:first-letter to choose
the level one headings and the first letter of
the p elements in elements whose class is
equal to project.

It is sometimes useful to create a single
style rule with the common styles that apply
to several selectors and then create individual
style rules with the styles they do not share.
Remember that rules specified later over-

ride rules specified earlier in the style sheet
(see “The Cascade: When Rules Collide” in
Chapter 7).

Defining Selectors 237

Combining Selectors

The examples throughout the chapter
have been simple to help you get a feel for
various selector types. However, the real
power lies in the fact that you can combine
any of the techniques in order to pinpoint
the elements that you’re interested in
formatting.

A bit of an extreme example is shown in @
to demonstrate what’s possible. Here are

a few ways you could achieve the same
results, moving from least specific to most
specific:

em {

color: red;

.project em {

color: red;

.about .project em {

color: red;

}

#gaudi em {
color: red;

}

o Here’s a doozy for you. Moving right to left, it
says “choose only the em elements that are found
within p elements that are immediately adjacent
siblings to h2 elements that have a lang attribute
whose value begins with es inside of any element
with a class equal to project.” Got that? You will
rarely, if ever, have occasion to write something
that complicated, but at least you know you can

if necessary. Or if you just want to scare anyone
reading your code.

.project h2[lang|="es"] + p em {
color: red;

}

File Edk ‘Wew History EBookmarks Tools Help

| || Antoni Gaudi - Introduction I + | =

Antoni Gaudi

Mlany tourists are drawn to Barcelona to see Antom
Gaudi's incredible architecture.

Barcelona celebrated the 150th annversary of Gaudf's
birth in 2002,

La Casa Mila

Gandi's worl: was essentially uzeful La Casa Wil 15 an
apartment bullding and real peaple live there.

La Sagrada Familia
The complicatedly named and cunously unfinished

Espaatory Temple of the Sacred Family is the most visited
buillding in Barcelona.

0 All that code 0 just to turn the em elements
red?!? If you're thinking it would be much better
(and easier) to simply write something like

.about em { color: red; }, you're absolutely right.
Unless you need to be highly specific, in which
case you can use the doozy.

238 Chapter 9

Each of these is typical of the kind of
selectors you’ll write day to day (though, as
noted earlier, it's a good idea to minimize
your use of id selectors). It doesn’t require
a lot of crazy selectors to implement most
designs, no matter how intricate they may

More Selectors in CSS3

CSS3 adds a lot of new selectors to your
toolbox. You saw some of them in this
chapter. Most of the other new ones are
pseudo-classes, some of which are fairly

complex, but powerful as a result. You
can find a table of all CSS3 selectors
and full descriptions at www.w3.org/TR/
css3-selectors/#selectors, brief descrip-
tions and examples at www.w3.org/wiki/
CSS/Selectors, and browser support at
http:/findmebyip.com/litmus. As you'll
see, browser support is solid except in
Internet Explorer, which didn’t begin sup-
porting most of the new CSS3 selectors
(particularly the pseudo-classes and
pseudo-elements) until IES.

appear.

So, combine selectors when it makes
sense to, but | recommend making your
style rules only as specific as neces-
sary. For instance, if you just want to
target em elements inside elements with
class="project", go with .project em
{ color: red; }. Even though the em
elements are nested inside p elements
in the HTML, there’s no point in writing
.project p em { color: red; } unless
there are em elements outside of para-
graphs you want to leave alone. In short,
start simple and get more specific as
needed.

Defining Selectors 239

www.w3.org/TR/css3-selectors/#selectors
www.w3.org/TR/css3-selectors/#selectors
www.w3.org/wiki/CSS/Selectors
www.w3.org/wiki/CSS/Selectors
http://findmebyip.com/litmus

Selectors Recap

To recap, we focused on these selectors,
any of which can be combined:

Selecting elements by context
Selecting elements by name
Selecting elements by class or id

Selecting with a pseudo-class or
pseudo-element

Selecting elements based on attributes

240 Chapter9

Formatting Text

with Styles

With CSS, you can change the font, size,
weight, slant, line height, foreground and
background color, and spacing and align-
ment of text. You can decide whether it
should be underlined or struck through,
and you can convert it to all uppercase,
all lowercase, or small caps. And you

can apply those changes to an entire
document or an entire site in just a hand-
ful of lines of code. In this chapter, you'll
learn how.

In This Chapter

Choosing a Font Family
Specifying Alternate Fonts
Creating ltalics

Applying Bold Formatting
Setting the Font Size

Setting the Line Height

Setting All Font Values at Once
Setting the Color

Changing the Text’s Background
Controlling Spacing

Adding Indents

Setting White Space Properties
Aligning Text

Changing the Text Case

Using Small Caps

Decorating Text

243
244
246
248
250
255
256
258
260
264
265
266
268
270

271
272

While many of the properties discussed

in this chapter apply mostly to text, that
doesn’t mean they work only with text.
Many of them work just fine on other types
of content as well.

We’ll continue with CSS layout in Chapter 11.

i - Introduction - Mogilla Firafex
Bl Ot Yov (o feonaie Tock wb
@ -p - D T (D it coobmod cmtimsedzamients M| © to [IG]

Barcelona's Archebect - La Sagrada Famika - Park Goell

Barcelona's Architect

Antoni Gaud's meredible baldngs bring milions of tourists to Bascelona each year

s oughts modidens
uite apparent i los work, fom
seudptures and fhostecs, b the Chrarch of the Saered Barnily and its eganue, blbeus towers

La Sagrada Familia

=4 -FYY S

The comphestedly named md o

sty sbnished maberpasee that s the FEapintory Tergle of the
ited bisldmg m Baceelons. Init, Gaue combenes s vasion of natire and
B fasth. His § this praject was 24 intenss that he shireed a
x. slept @ 30 apartment s the work site arounded by pans and drasergs, and 5o
completely ignared bis disshevelnd sppearance that when, in 1926, he war srck by a srestesr in Sant
ol the church, be was mistaken For an indigent and brought 12 a hosital For the poor where he Sed seon
tEsreafter

The Sagrada Fasifia attracts even the non-relgions 1ot doses in large part dus 16 this trage story and
its shll cefinished stace, of which the everpresest scaffolding and cranes are permanent reminders Bt
there it somethng mmore. In the Sagrada Famifta, Gaudi agai brings nature and architechure
together--the aomuy spires lock semetny bre g stabagriie: = o wdergound cave—lhis e

reverEe

Park Guell

The Fark Guel abways senmds me of Howard Roarkm Ayn Band's The Fountainfvad. Goulf's
proyect m the Pak Guell was to budd a rendeetal communsy whose readents would love wivere they
tivedd Tt was caver finiched

42 10 erjey . The Pack Gl s
+ bench i

Hell everlacking
ik foreigats:

0 Here is what the page looks like with no style
sheet applied. (The default heading sizes in
particular may be different across browsers.) You
can find the HTML source code (and all subsequent
CSS examples) in the Examples section of the
book’s site: www.bruceontheloose.com/htmicss/
examples/.

242 Chapter 10

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

o Because | specified Palatino Linotype on the
body element, it cascades down to other elements.
| overrode that setting for the h1 and h2 elements
by setting their font to Arial Black. However, as
you’ll see, defining a single font at a time is not
sufficient, because not all operating systems may
support it. In the case of Palatino Linotype, it's
common on Windows but might not be available
on Mac OS or Linux systems.

body {
font-family: "Palatino Linotype";
}
h1, h2 {
font-family: "Arial Black";
}

Barcalona’s Architact

o el

0 On this Windows system, Palatino Linotype was
installed and thus displays properly here. As you
can see, the body font-family setting cascaded
down to the a and p elements. The h1 and h2
elements would show it too, if we hadn’t specified
Arial Black for them.

G Palatino Linotype does not come installed on
some Mac systems. If you choose a font that is not
installed on your visitor’s system, their browser,

as shown here, will use the default font instead (in
this case, that is Times).

Choosing a Font Family

One of the most important choices you’ll
make for your Web site is the font for the
body and headlines. As you’ll learn, not
every system supports the same fonts by
default, so you should define alternate
fonts as fallbacks. But first let’'s see how
to define a single font family () and @)
and the ramifications of not providing the
alternates @.

To set the font family:

After the desired selector in your style
sheet, type font-family: name, where
name is your first choice of font.

Surround multi-word font names with
quotes (single or double).

If your font names contain non-ASCII
characters, you’ll have to declare the encod-
ing for your style sheet. Do so by adding
@charset "UTF-8"; on the very first line of
your style sheet. In fact, there’s no harm in
including it in all your style sheets even if you
don’t need to right away. Doing so can help
you avoid a problem later.

While you can specify any font you want,
your visitor will only see the fonts that they
already have installed on their system. See the
next section for more details.

You can set the font family, font size, and
line height all at once by using the general
font property. See “Setting All Font Values at
Once,” later in this chapter.

The font-family property is inherited.

Formatting Text with Styles 243

Specifying
Alternate Fonts

Although you can specify whichever font
you want, your visitors will see that font
only if they have it installed on their com-
puter. So, it'’s best to use fonts that you can
reasonably expect them to have. There

is a small list of fonts that both Windows
and Mac OS have by default (see the next
sidebar for details).

Then there are the other cases to consider.
If the font has different names on each
system, you can specify both names, and
each OS will use the one it has installed.
Similarly, if the font you want only comes
on one operating system, you can choose
an alternate font for the other system. It
may or may not match exactly, but the goal
is to specify a font that’s as close as pos-
sible. Finally, it's best to specify a generic
standard font in case the systems don’t
support the others you listed).

o The font-family property lets you include
alternate fonts that the browser should use if the
system does not have the first one installed. In this
case, you can tell the browser to look for Palatino
on systems that don’t have Palatino Linotype
installed G and then fall back to a standard
serif font if neither is installed. A list of fonts is
known as a font stack. | added alternates for the
headings as well.

body {
font-family: "Palatino Linotype",
Palatino, serif;

}
h1,
h2 {
font-family: "Arial Black", Arial,
sans-serif;
}

Default Fonts Shared by Mac 0S and Windows

There is a very limited list of fonts to choose from that both Mac OS and Windows have by default:
Arial, Arial Black, Comic Sans MS, Courier New, Georgia, Impact, Trebuchet MS, Times New
Roman, and Verdana. Consequently, the vast majority of sites on the Web use one of these fonts
(Arial is probably the most common). They might not render in exactly the same way in browsers
on Mac OS and Windows, but you can be confident that they will display.

You also have options beyond these. Both Mac OS and Windows include more (but different)
system fonts you can use in your font stacks. Search online for “font stacks” to see a range of
font-family declarations that you can copy and paste into your style sheets to provide each visitor a

similar font.

It’s also possible to load a font that systems don’t have by default, an approach that is becoming

increasingly common. Learn how in Chapter 13.

244 Chapter 10

73 At [-un - rdroduction - Mazills el _ = ~lmix
Fio B Yew Cglory Soomerks Dok Heb
Redoni G - Sroduction |+

its arganic, ¢

La Sagrada Familia

e v Tacll

A mastep

1§ in Barcelona. In it, Caudi combines

0 Systems that have Palatino Linotype installed
will continue to use that font.

ann Anipeni Cawl - Introduetion

* Barcel titect
« La Sagrada Familia
* Park Guell

Barcelona's Architect

Antoni Gaudf's Incredible buildings bring millions of tourists to Barcelona cach year.

Gaudi's non-conformity, already visible in his teenage years, coupled with his quiet but firm
devotion 1o the church, made a unique foundation for his thoughts and ideas. His search for
simplicity, based on his careful observations of nature are quite apparent in his work, from the
el and its incredibile sculptures and mosaics, to the Chuech of the Sacred Family and
its organic, bulbous towers.

Tag

La Sagrada Familia

e Re@cl

The complicatedly named and curhously unfinished masterpicce that ks the Explatory Temple
of the Sacred Family ks the most visited building in Barcelona. In it, Caudi combines his vision

G Systems that don’t have Palatino Linotype will
use Palatino, as long as they have it (as most Mac
systems do). If they don’t have Palatino either,
the browser will try the third choice. Virtually all
systems include generic serif and sans-serif fonts.
Note that the default line height is still different.
You’ll adjust this a bit later.

To specify alternate fonts:

1. Type font-family: name, where name is
your first choice of font.

2. Type , name2, where name2 is your sec-
ond font choice. Separate each choice
with a comma and a space.

3. Repeat step 2 as desired, and finish
your list of fonts with a generic font
name (serif, sans-serif, cursive,
fantasy, or monospace; whichever style
is most appropriate based on your pre-
ferred font).

You can specify fonts for different alpha-
bets in the same font-family rule (such as
Japanese and English) to format a chunk of
text that contains different languages and
writing systems.

Systems typically have a font that maps
to the following generic font names: serif,
sans-serif, cursive, fantasy, and monospace—
which is why it’s standard practice to specify
one at the end of your font stack in case all
else fails. Of these, you’ll use serif and sans-
serif the most (by far), since they correspond
to the most commonly used fonts.

Formatting Text with Styles 245

Creating Italics

In traditional publishing, italics are often
used to set off quotations, emphasized
text, words that are foreign relative to a
language (e.g., de rigueur), some scientific
names (e.g., Homo sapiens), movie titles,
and much more.

Browsers typically italicize some HTML
elements (such as cite, em, and i) by
default, so you don’t need to italicize them
in your CSS. As you learned in “Semantic
HTML: Markup with Meaning” in Chapter 1,
you use HTML to describe the meaning of
content, not to make it look a certain way.
Sometimes you’ll want to make something
italic, but it isn’t appropriate to mark up
the content with one of the elements that
also happens to render italic text. The CSS
font-style property allows you to do this
to any element.

Just as an example, let’s see how to do this

to paragraphs). (We won’t leave them
this way because they’d be exceedingly
difficult to read, so we’ll omit the rule from
subsequent examples.)

The italic version of a font often is created
by a font designer from scratch, especially
for serif fonts. It is not merely a slanted
version of the normal text, but instead
includes differences appropriate to the
form. For example, Palatino Linotype has a
true italic font face @. The letter “a” in par-
ticular is clearly not just slanted to mimic
italics. But a font may not have an italic
version. If you set text in that font to font-
style: italic, the browser may display a
computer-simulated, faux italic that does
simply slant the normal letters to mimic the
style. However, the quality isn't the same.

o In this example, I've made the paragraphs

display in italics.

body {
font-family: "Palatino Linotype",
Palatino, serif;

}
hi,
h2 {
font-family: "Arial Black", Arial,
sans-serif;
}
pi
font-style: italic;
}

246 Chapter 10

Yew Hgloey Bocknarks Boh ek

f T T ——

+

2|

Tt 11,

0 The paragraphs are italicized, but not the list
items at the top or the headings.

Additionally, a font designer may create
an oblique version of a font, which typi-
cally is the normal letters slanted, perhaps
with some adjustments to spacing and the
like, but with the same letters. You can set
font-style: oblique;, though it’'s uncom-
mon to do so. Faux italic may show in the
absence of an oblique or italic version of
the font.

To create italics:
1. Type font-style:.

2. After the colon (:), type italic for italic
text, or oblique for oblique text. (You'll
probably use italic 99 percent of the
time. You might not notice a difference
with oblique in all instances.)

To remove italics:
Type font-style: normal.

One reason you might want to remove
italics is to emphasize some text in a para-
graph that has inherited italic formatting from
a parent element. For more details about
inheritance, consult “The Cascade: When
Rules Collide” in Chapter 7.

The font-style property is inherited.

Formatting Text with Styles 247

Applying Bold
Formatting

Bold formatting is probably the most com-
mon and effective way to make text stand
out. For instance, browsers typically style
the h1-h6 headings in bold by default.
Just as with italics, you may style any text
in bold or turn it off. Style sheets give you
a lot of flexibility with bold text, provid-
ing relative values. However, the fonts
themselves don’t always include different
weights that map to the relative values,
often making them look the same (when
in doubt, just specify the weight as bold)
(@ and O).

To apply bold formatting:
1. Type font-weight:.

2. Type bold to give an average bold
weight to the text. You'll likely use this
value the vast majority of the time.

Or type bolder or lighter to use a
value relative to the current weight.

Or type a multiple of 100 from 100 and
900, where 400 represents normal or
book weight and 700 represents bold.
This approach is useful when you're
working with fonts that have numerous
weights available.

To remove bold formatting:
Type font-weight: normal.

o Browsers add bold formatting to headings
(like h1 and h2) automatically. | applied a normal
font weight to remove it from all h2 elements so
you could see the difference in the page. I've
also added bold formatting to em text and new
and hovered links). (Note that I've changed
the headings’ font-family from Arial Black to
Arial just for the examples in this section. See the
second-to-last tip.)

body {
font-family: "Palatino Linotype",
Palatino, serif;

}

h1,
h2 {
font-family: Arial, Helvetica,
sans-serif;}

h2 {
font-weight: normal;

}

em,
a:link,
athover {

font-weight: bold;

}

) antant Laudi - Inteoduction - Mazila Fieefos -10] x|

Ble Edt Yew Hgory Bockmarks Bols Hop

Antoni Gaud - Introduction | |

* Harcelona's Architect

® La Sagrada Familia

* FPark Guell
Barcelona's Architect

Antoru Gaudi's ncredible buildings bring rullions of toursts to
Barcelona each year.

Gaud{'z non-canformity, already vizible in his teenage years, coupled
with hig quist but firm devotion to the church, made a unigue
feundabion for his thoughts and dees. His seacch for simplicity, based on
hiz careful abservations of nature are quite apparent in his work, from
the Park Guell and itz mcredible soulptures and mosacs, (o the Church
of the Sacred Family and itz organic, bulbous towers

La Sagrada Familia =

0 The h1 heading is bold, and the h2 has a
normal weight. New links stand out, while visited
ones are less obtrusive.

248 Chapter 10

) Antonl Gaudf - Introduction - Mozilla Firefos: =10 =1
Fle B Yew Heloy Bockmads Tk Heb
Akoni G - Ikrembuntion | +

and architecture together —the scanng spaires look somethung hike nsing 2l
stulagrmites in an underground cave —this e in reverance.

Park Guell

[

The Park Guell always reminds me of Howard Roark in Ayn Rand's
The Fountainhead. Gaudl’s project in the Park Guell was to build a
rezdential cormmuruty whese resdents would love where they hved, It
wag never firished,

Parhape that 1s for the best, since now we all get to enjoy 1t The Park
Guell 12 set on & hull overlecking practically all of Barcelona. Ite

beautiful and even comiertable serpentine bench is filled with

foreignera and locala alike every day of the week. Itz mosaic lizard have
become synonymous with the city itzelf. -

0 At the bottom of the page, you see a link (“The
Fountainhead”) and the word “all.” Both are not
only bold from our new style rule, but also italic
because of the browser’s default rendering of their
containing elements. They are marked up with
cite and em, respectively, to reflect their meaning.
(You’ll also notice that the “Park Guell” h2 has a
normal weight, not bold.)

Since the way weights are defined varies
from font to font, the predefined values may
not be relative from font to font. They are
designed to be relative within a given font
family.

If the font family has fewer than nine
weights, or if they are concentrated on one
end of the scale, some numeric values will cor-
respond to the same font weight.

For the reasons noted in the previ-
ous two tips, it’s customary to assign bold
simply with font-weight: bold, which will
always work.

What can you remove bold formatting
from? Any element where it’s been applied
automatically (strong, h1-h6, and b come to
mind) or where it’s been inherited from a par-
ent element (see “The Cascade: When Rules
Collide” in Chapter 7).

The rest of the examples in this chapter
use Arial Black as the font-family for the h1
and h2 headings instead of the Arial setting
shown in 0 through G However, in those
remaining examples, I've set font-weight:
normal; on both h1 and h2, because Arial
Black is already a bold font by nature. When
you apply font-weight: bold; to Arial Black,
the browser may display a faux bold styling in
an attempt to make it look bolder. By setting
font-weight: normal; to these Arial Black
headings, I've returned them to the font’s
natural, very heavy state. See a related discus-
sion of faux italics in “Creating Italics.”

The font-weight property is inherited.

Formatting Text with Styles 249

Setting the Font Size

There are two basic ways to set the font
size for the text in your Web page. You can
mandate that a specific size be used @,
or you can have the size be relative to the
element’s parent font size @.

Setting the size relative to the parent takes
a little getting used to; you need to under-
stand how the browser treats these units
relative to their parents, and I'll explain that
more in a minute.

But first, when you use this method

it's best to establish a baseline on the
body element, namely by declaring

body { font-size: 100%; } @. Most of the
time, this sets the size to the equivalent of
16px, which is the default font size on most
systems. As usual, that value cascades
down to the other elements (remember,
font-size is an inherited property) unless
given their own font-size.

73 Ainkon G - Inbradction - Mozila Firelo =)
Eh B Yew by poineb B e

Boturs G Wb |+

* Barcelonn's Arciedt
* LaSaerals Forlia
* Pack Gl

Barcelona's Architect
credible buil

Antond Gaudi millions of

riage fears, ¢

organic, bulbous tow

La Sagrada Familia

and &

0 The sizes I've specified are displayed in the
browser. The links in the table of contents (top of
the page), the headings, and the paragraphs all
reflect the font-size additions to the style sheet.

0 Here | use pixel values to have control over

the initial size of the text (which I've decreased in
size throughout, compared with most browsers’
defaults). The paragraphs inherit the font-size set
on body. You can see the results in 0

body {

font-family: "Palatino Linotype",
Palatino, serif;

font-size: 14px;

}
h1,
h2 {
font-family: "Arial Black", Arial,
sans-serif;
font-weight: normal; /* removes faux
bold from the already heavy Arial
Black */
}
h1 {
font-size: 22px;
}
h2 {
font-size: 15px;
}
em,
a:link,
athover {
font-weight: bold;
}

/* Table of Contents navigation */
.toc a {

font-size: 12px;
}

250 Chapter 10

G The font-size: 100% declaration on body

sets a baseline from which the em font sizes

are based. That 100% translates to an equivalent
default text size of 16 pixels on most systems. As
such, this style sheet result will be equivalent to
the one shown in iY. The comment following each
font-size value explains how it was calculated,
showing the typical pixel equivalents.

body {
font-family: "Palatino Linotype",
Palatino, serif;
font-size: 100%; /* 16px */

}
h1,
h2 {
font-family: "Arial Black", Arial,
sans-serif;
font-weight: normal;
}
h1 {
font-size: 1.375em; /* 22px / 16px */
}
h2 {
font-size: .9375em; /* 15px / 16px */
}
p{
font-size: .875em; /* 14px / 16px */
}
em,
a:link,
a:hover {
font-weight: bold;
}

/* Table of Contents navigation */
.toc a {

font-size: .75em; /* 12px / 16px */
}

So, how do you figure out what em values
to specify? Well, 1em is equal to the default
size, in this case 16px. From there you can
determine the em (or percentage) values
with just a tiny bit of division.

desired size / parent’s size = value

For example, you want the ha to resemble
22px, and you already know the parent’s
size is 16px. So:

22 / 16 = 1.375

So by defining h1 { font-size: 1.375em; },
you’re all set (9. What this says is, “Make
the ha text 1.375 times as large as its
parent’s text.” Another way to write the
rule would be h1 { font-size: 137.5%; }.
However, aside from setting the base
font-size on body with a percentage, it's
more common to size type in ems than
percentages.

Here’s another one. You want the para-
graphs to be 14px, and:

14 / 16 = .875

So, you set p { font-size: .875em; }
(Alternatively, this could be 87.5%.)

Formatting Text with Styles 251

Let’s discuss one more example, since this
is where you can get tripped up. The first
paragraph contains two links (@ and @).
Suppose you want to make the links 16px
while leaving the other paragraph text at
the defined 14px. You might be inclined to
set the link font-size to 1em, thinking that
lem =16px.

But, remember, these values are rela-

tive to their parent, and the parent in this
case is the p, not body. And the paragraph
size is 14px. So, in order to make the links
16px, you need to use an em value larger
than 1em.

16 / 14 = 1.1428457

So, the slightly verbose a { font-size:
1.1428457em; } gives us the desired result.

One final point: Remember that a body
font-size of 100% maps to a default of
16px most of the time. One case in which
that can deviate is if a user overrides

the default in their browser settings; for
instance, making it 20px if they’re visually
impaired. With body set to 100%, your page
respects this and sizes the rest of the text
accordingly, er, relatively! That’s the beauty
of sizing your text with the likes of ems and
percentages.

73 Ainkon Gaed - Inbraduction - Muzila Frelo =k 1]

hetord |+

* Barcclona's Architert
* LaSagunks Foia
® Pk Gl

Barcelona's Architect

na Gaudy's incredible buvdings brang milions of townsts to Harce

re g pase the
aics, 1o the Church of the Sacped Family and 13

La Sagrada Familia

Vo By il

and architecture wil J et v

0 On most systems with default settings, the
em-based font sizes match those from the pixel-
based version 0

G Part of the HTML, which has two a elements nested in their parent p.

<p>Gaudi's non-conformity, already visible in his teenage years, coupled with his quiet but firm
devotion to the church, made a unique foundation for his thoughts and ideas. His search for
simplicity, based on his careful observations of nature are quite apparent in his work, from the
Park Guell and its incredible sculptures and mosaics, to the Church
of the Sacred Family and its organic, bulbous towers.</p>

252 Chapter 10

To mandate a specific font size:
1. Type font-size:.

2. Type a specific size after the colon (3,
such as 13px.

Or use a keyword to specify the size:

xx-small, x-small, small, medium,
large, x-large, or xx-large.

See “A Property’s Value” in Chapter 7 for
details about units.

There shouldn’t be any spaces between
the number and the unit.

If you set the font size with pixels,
visitors using Internet Explorer will not be
able to make the text bigger or smaller with
the browser’s text size option. That’s one
argument for sizing your fonts with ems or
percentages. Beginning with IE7, visitors can
zoom the entire page in and out, which is

an improvement over IE6, though it isn’t the
same as changing only the text size. If you’re
wondering about IE6’s reach (since it doesn’t
have page zoom), it has seen a dramatic drop-
off in overall use around the world in the past
few years, so some designers and developers
disregard it entirely (it’s notoriously buggy
too). However, it still has a large user base in
some countries, particularly China and South
Korea. You can check approximate worldwide
numbers at www.ie6countdown.com/.

Different browsers may interpret the
keywords in different ways.

Use points (pt) as the unit type only in
print style sheets, not for the screen.

Because of wildly varying screen resolu-
tions, avoid setting font-size in cm, mm, and
picas. They’re rarely used in practice.

@D The font-size property is inherited.

Formatting Text with Styles 253

www.ie6countdown.com/

To set a size that depends on
the parent element’s size:

1. Type font-size:.

2. Type the relative value following the
colon (:), such as 1.5em or 150%.

Or use a relative keyword: larger or
smaller. (These are less common to
use than percentages, which are them-
selves less common than ems.)

An em unit (not to be confused with the
HTML em element) is equal to the size of the
font. So one em equals 100%.

The parent element’s size may be set by
the user or by you (the designer), may be inher-
ited, or may come from the browser’s defaults.
As mentioned, on most current browsers the
default size for the body element is 16 pixels.

The child of an element with a relative
size inherits the size, not the factor. So, the

a elements in the p (3 inherit a size of 14
pixels (2, not a relative value of .875em. The
links display as 14px unless you override it.

You can set font size together with other
font values. See “Setting All Font Values at
Once,” later in this chapter.

CSS3 introduces some new units. One of
the most interesting ones is rem, short for root
em. It’s like em, but it sizes everything relative
to the root, so you don’t have to do the parent
element font size division | described for ems.
Browser support is strong in modern browsers.
Internet Explorer didn’t support it until version
9 (http://caniuse.com/#search=rem), so you’d
have to provide a default value for earlier ver-
sions of IE. Jonathan Snook describes how to
use rem and one possible strategy for address-
ing IE8 and below: http://snook.ca/archives/
html_and_css/font-size-with-rem. (I recom-
mend setting body to 100%, rather than 62.5%
as he shows, and creating your rem sizes from
there.)

There’s also an ex unit, which refers to
the x-height of the parent element, but it is not
widely supported.

254 Chapter 10

http://caniuse.com/#search=rem
http://snook.ca/archives/html_and_css/font-size-with-rem
http://snook.ca/archives/html_and_css/font-size-with-rem

o Assuming a default body element of 16 pixels,
the font size of the p element will be .875em, or
about 14 pixels. The line height will be 1.6 times
those 14 pixels, or about 22.4 pixels.

body {
font-family: "Palatino Linotype",
Palatino, serif;
font-size: 100%;
}
h1,
h2 {
font-family: "Arial Black", Arial,
sans-serif;
font-weight: normal;
}
h1 {
font-size: 1.375em;
}
h2 {
font-size: .9375em;
}
p{
font-size: .875em; /* 16px / 14px */
line-height: 1.6;
}

) Ankoni Gaush - Infroduction - Mazlla Frelm: loix
tie G fow oy Gk bbb

Ak g - itk +

B e
* L Sagrads ok
* PxhGod

Barcelona's Architect

La Sagrada Familia

Vo bl B

£
¢

0 Spacing out lines with 1ine-height can make
them more attractive and easier to read.

Setting the Line Height

Line height refers to a paragraph’s lead-
ing, which is the amount of space between
each line in a paragraph. Using a large line
height can sometimes make your body text
easier to read. A small line height for head-
ings with more than one line often makes
them look more stylish.

To set the line height:
1. Type line-height:.

2. Type n, where n is a number that will
be multiplied by the element’s font size
to obtain the desired line height. (This
is the most common approach, just a
number with no unit.)

Or type a, where a is a value in ems,
pixels, or points (use points only for
print).

Or type p%, where p% is a percentage of
the font size.

You can specify the line height together
with the font family, size, weight, style, and
variant, as described in the next section.

If you use a number to determine the
line height, this factor is inherited by all child
items. So if a parent’s font size is 16 pixels (or
the equivalent in ems or such) and the line
height is 1.5, the parent’s line height will be 24
(16 x 1.5). If the child’s font size is 10, its line
height will be 15 (10 x 1.5).

If you use a percentage or em value,
only the resulting size (or “computed value”)
is inherited. So, given a parent at 16 pixels
with a line height of 150%, the parent’s line
height will still be 24 pixels. However, all child
elements will also inherit a line height of 24
pixels, regardless of their font size.

Formatting Text with Styles 255

Setting All Font
Values at Once

You can set the font style, weight, variant,
size, line height, and family all at once @.
This is the way to go whenever possible so
you can keep your style sheets lean.

To set all font values at once:

1.
2.

Type font:.

Optionally type normal, italic, or
oblique to set the font style (see “Cre-
ating ltalics”).

Optionally type normal, bold, bolder,
lighter, or a multiple of 100 (up to 900)
to set the font weight (see “Applying
Bold Formatting”).

Optionally type normal or small-caps
to remove or set small caps (see “Using
Small Caps”).

Type the desired font size (see “Setting
the Font Size”).

If desired, type /1ine-height, where
line-height is the amount of space
there should be between lines (see
“Setting the Line Height”).

Type a space followed by the desired
font family or families in order of
preference, separated by commas, as
described in “Choosing a Font Family.”

o This style sheet is equivalent to the one
shown in in “Setting the Line Height,” as is
the resulting display @). I've simply consolidated
the font properties for the body, h1, and h2 rules.
Note that | didn’t have to specify that the font-
weight be normal for hi and h2, since normal is
the default for the font property. Also, | couldn’t
consolidate the p element’s declarations because
font shorthand requires the family and size
properties at a minimum. See examples in the first
tip that include the font-style, font-variant,
font-weight, and line-height in the font
shorthand.

body {
font: 100% "Palatino Linotype", Palatino,
serif;

}

hi,
h2 {
font: 1.375em “"Arial Black", Arial,
sans-serif;

}
h2 {
font-size: .9375em;
}
p{
/* Can’t combine these into
font shorthand unless declaring
the font family with them at the
same time. */
font-size: .875em;
line-height: 1.6;
}
em,
a:link,
a:hover {
font-weight: bold;
}

/* Table of Contents navigation */
stoc a {
font-size: .75em;

}

256 Chapter 10

La Sagrada Familia

Volfly

unfinished mas

The comglicatedly nasied an
ESacred F

£ project was 60 eteres that he

0 This page is identical to the one shown in 0 in
“Setting the Line Height.”

An example of combining the font-
size, line-height, and font-family
declarations into font shorthand is font:
.875em/1.6 "Palatino Linotype",
Palatino, serif;. The line height follows
the size and forward slash. You can also
include the font-style, font-variant,

and font-weight. The following is an
example with all possible properties in a font
declaration: font: italic small-caps
bold .875em/1.6 "Palatino Linotype",
Palatino, serif;. The order of properties is
important. You can use any combination of the
properties as long as both the size and family
are declared.

You can also set each property sepa-
rately, but you should combine the properties
with the font shorthand whenever possible.

The first three properties may be speci-
fied in any order or omitted. If you omit them,
they are set to normal—which may not be
what you expected 0.

The size and family properties must
always be explicitly specified: first the size,
then the family.

The line height, which is optional, must
come directly after the size and the forward
slash.

The font property is inherited.

Formatting Text with Styles 257

Setting the Color

You can also change the color of the ele-
ments on your Web page @.

To set the color:
1. Type color:.

2. Type colorname, where colorname is
one of the predefined colors (see “CSS
colors” in Chapter 7).

Or type #rrggbb, where rrggbb is the
color’s hexadecimal representation.
This is the most common way to specify
colors.

Or type rgb(z, g, b), where r, g, and b
are integers from 0—255 that specify
the amount of red, green, and blue,
respectively, in the desired color.

Or type rgb(r%, g%, b%), where r, g,
and b give the percentage of red,
green, and blue in the desired color.

Or type hsl(h, s, 1), where h is an
integer from 0—360 that specifies the
hue, and s and 1 are percentages from
0 to 100 that specify the amount of
saturation and lightness, respectively, in
the desired color. (Generally, it's better
to instead use hex or RGB for non-
transparent colors.)

o You can use color names, hexadecimals, or
RGB, HSL, RGBA, or HSLA values to define your
colors. Note that the a:visited and a:hover colors
(#909 and #c3f, respectively) use the abbreviation
discussed in the second tip.

body {
color: #909;
font: 100% "Palatino Linotype", Palatino,

serif;
}
h1,
h2 {
color: navy;
font: 1.375em “"Arial Black", Arial,
sans-serif;
}
h2 {
font-size: .9375em;
}
pi{
font-size: .875em;
line-height: 1.6;
}
em {
font-weight: bold;
}
/* Links */
a:link {
color: #74269d;
font-weight: bold;
}
a:visited {
color: #909;
}
a:hover {
color: #c3f;
font-weight: bold;
}

/* Table of Contents navigation */
.toc a {

font-size: .75em;
}

258 Chapter 10

Barcelona's Architect

La Sagrada Familia

e

0 The headings are navy blue, and the text is
light purple. The links are dark purple but turn
lighter after being visited, and they turn a pinkish
purple when hovered over so as to stand out.

Or type rgba(z, g, b, a), where r, g,
and b are integers from 0—255 that
specify the amount of red, green, and
blue, and a is a decimal from O to 1 that
specifies the amount of alpha transpar-
ency in the desired color.

Or type hsla(h, s, 1, a), where h is an
integer from 0—-360 that specifies the
hue, s and 1 are percentages from O to
100 that specify the amount of satura-
tion and lightness, and a is a decimal
from O to 1that specifies the amount of
alpha transparency in the desired color.

If you type a value higher than 255 for
1, g, or b, 255 will be used. Similarly a per-
centage higher than 100 will be substituted
with 100.

You can also use #xgb to set the color
where the hex values are repeated digits.
In fact, | recommend it. So you could (and
should) write #FF0099 as #F09 or #f09.

The hex number should not be enclosed
in double quotes.

Keep in mind that Internet Explorer
didn’t support HSL, RGBA, and HSLA until IE9,
so if you use any of those in your color dec-
larations you’ll have to define fallback colors
for older versions of IE. See “CSS colors” in
Chapter 7 for details.

The color property is inherited.

Formatting Text with Styles 259

Changing the Text’s
Background

You can set the background of individual
elements, the whole page, or any com-
bination of the two @). In so doing, you
can change the background of just a few
paragraphs or words, links in their different
states, sections of content, and more.

To change the text’s background:
1. Type background:.

2. Type transparent or color, where
color is a color name, or hex, rgb, hsl,
rgba, or hsla color value (see “Setting
the Color”). Hex colors are the most
common.

3. If desired, type url(image.gif) to use
an image for the background, where
image.gif is the path and file name of
the image relative to the location of the
style sheet.

If desired, type repeat to tile the image
both horizontally and vertically, or
repeat-x to tile the image only horizon-
tally, or repeat-y to tile the image only
vertically, or no-repeat to not tile the
image.

If desired, type fixed or scroll to
determine whether the background
should scroll along with the canvas.
(Leaving it out, as is usually the case,
defaults to scroll.)

If desired, type x y to set the position
of the background image, where x and
y can be expressed as an absolute
distance or as a percentage from the
upper-left corner. Or use the values
left, center, or right for x and top,
center, or bottom fory.

o Setting the background color of the body
element colors the background of the whole page.
The background set on the element with the toc
class distinguishes the table of contents from other
parts of the page 0

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,
serif;

... [other CSS is here] ...

/* Table of Contents navigation */
.toc {

background: #ebc6f9;
}

stoc a {
font-size: .75em;

}

260 Chapter 10

73 Ainkon (s - Intradietion - Mozl Firelos 1 al0i x|

* Barrcloma's Archabend
® Lafarwla Fuuia
® Pl Grell

Barcelona's Architect

La Sagrada Familia

P By Fie i

0 The background of the body element is light
blue. The background of the table of contents is
light purple.

Multiple Backgrounds and More
with CSS3

CSS3introduces a handful of new back-
ground-related capabilities, including
the long-awaited multiple backgrounds,
background resizing, and more. You can
learn about some of these in Chapter 14.
See www.w3.org/TR/css3-background/
if you want to dig into all these features
in the related CSS3 module.

You can specify both a color and an
image’s URL for the background. The color
will be used until the image is loaded—or if it
can’t be loaded for any reason—and will be
seen through any transparent portions of the
image. If you define a background image for
an element, it’s generally a good practice to
define a background color that provides suffi-
cient contrast between your text color and the
background. This will ensure your text remains
legible if your visitor has disabled images in
his or her browser or if the image doesn't load
for some reason. If you don't define an explicit
background color, it'll be whatever color the
element inherits from its parent, such as the
default white of the body element. That would
spell trouble if you were hoping to show light
text on a dark background image. See the
“More on Backgrounds” sidebar for more
details.

Create enough contrast between the
background and the foreground so that your
visitors can actually read the text. Not only
does this help the average user, but it’s impor-
tant for accessibility. Contrast is especially
important for color-blind visitors.

The background property is not
inherited.

Formatting Text with Styles 261

www.w3.org/TR/css3-background/

More on Backgrounds
The background property is powerful, and you'll find lots of occasions to use it. Understandably,

you might have been a little uncertain about how to leverage step 3 of “To change the text’s back-
ground.” Here is an example:

body {
background: #foc url(bg-page.png) repeat-x scroll 0 0;

}

That’s actually shorthand notation, just like you use the font property to combine font-family,
font-size, line-height, and other properties in one declaration.

Moving left to right, that background shorthand notation could be rewritten as this:

body {
background-color: #foc;
background-image: url(bg-page.png);
background-repeat: repeat-x;
background-attachment: scroll;
background-position: 0 0;

}

That’s a lot of code, so you can see why shorthand is the way to go unless you have reason to
split it up. In fact, you can even make our example a little shorter by removing the scxroll and 0 0
default values:

body {
background: #foc url(bg-page.png) repeat-x;
}

In practice, your URL will be something like ../img/bg-page.png, because you won’t want to keep
your images in the same folder as your style sheets.

So, what does this do? Imagine that the background image, bg-page.png, is a repeating pattern
that is 15 pixels wide and 600 pixels high. The example shorthand rule above says, “Repeat the
image infinitely horizontally and show the color #foc infinitely wherever the image isn’'t.” So, you'd
see the image all the way across for the first 600 pixels of height. Wherever the content is taller
than 600 pixels, you'll see #foc (hot pink, perfect for your Hello Kitty tribute site).

262 Chapter 10

More on Backgrounds (continued)

Presumably, the image was designed to blend nicely into the color so visitors don’t see an obvious
line where the image ends and the color begins. And because the background was defined for
body, all the page content sits on top of the image and background color. If you dig around the
CSS of nearly any site, you're likely to find some variation of background set on body.

Here are a few more examples to give you a taste of the possibilities:
Black background color combined with image that repeats infinitely vertically.

body {
background: #000 url(../../image/bg-page.png) repeat-y;

}

Background image that repeats infinitely in all directions. Yellow shows if image doesn’t load or
until image loads.

body {
background: yellow url(../img/bg-smiley-faces.png);
}
Dark green background color with background image that doesn’t repeat and that is positioned

200 pixels from the left edge of the page and 125 pixels from the top. Negative values are allowed
too. Use center to center it in the page.

body {
background: #3f8916 url(../../img/bg-gumby.png) no-repeat 200px 125px;
}

I've focused on body backgrounds because of their impact on designing your page, but you can
apply background properties to any element. So if you really wanted to, you could set a photo of
Telly Savalas as the background of all your paragraphs. In fact, | encourage it.

Formatting Text with Styles 263

Controlling Spacing

You can add or reduce space between
words (which is called tracking) or between
letters (which is called kerning) @.

To specify tracking:

Type woxd-spacing: length, where
length is a number with units, as in 0.4em
or 5px.

To specify kerning:

Type letter-spacing: length, where
length is a number with units, as in 0.4em
or 5px.

You may use negative values for word
and letter spacing.

Word and letter spacing values may also
be affected by your choice of alignment and
font family.

Use a value of normal or 0 to set the
letter and word spacing back to their defaults
(that is, to add no extra space).

If you use an em value, only the resulting
size (or “computed value”) is inherited. So, a
parent at 16 pixels with .1em of extra woxd-
spacing will have 1.6 pixels of extra space
between each word. And all child elements will
also have 1.6 pixels of extra space between
words, regardless of their font size. Set the
extra spacing explicitly for the child elements
if you need to override such a value.

The word-spacing and letter-
spacing properties are inherited.

o Here I've added .4em of extra space between
the heading letters, which at a font size of 22
pixels will mean almost 9 pixels between each
letter 0

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,
serif;

}

h1,
h2 {
color: navy;
font: 1.375em "Arial Black", Arial,
sans-serif;
letter-spacing: .4em;

}

h2 {
font-size: .9375em;

}

... [rest of CSS] ...

1) Antard Gawdi - Intraduction - Mozilla Firela =101 %]

Ble Ede Wew Hgory Bockmars Bk e

Arkond Gouxd - Irerodcton |15

® Baeelosa’s Architest
* LaSagrada Fundia
* Dk Guell

Barcelona's Architect

La Sagrada Familia

0 The heading letters now have more space
between them.

264 Chapter 10

o This code adds a 1.5em indent to the p
elements, which, since their font size is about
14 pixels, will be an indent of about 21 pixels 0

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,

serif;
}
hi,
h2 {
color: navy;
font: 1.375em “"Arial Black", Arial,
sans-serif;
letter-spacing: .4em;
}
h2 {
font-size: .9375em;
}
p{
font-size: .875em;
line-height: 1.6;
text-indent: 1.5em;
}

... [rest of CSS] ...

) Antuni Gau - Introduetion - Mozills Firefor: - =1

L Edt wew Moy Qookmarks Bl kb
Arkuni Gauad - Inkroaction L+

* Darcelona’s Archirect

Barcelona's Architect

Anton: Gaudi's incredible buildings bring millions of tourists to Darcelona

e Sacred Family and its org

La Sagrada Familia =

0 Each paragraph is indented 21 pixels.

Adding Indents

You can determine how much space
should precede the first line of a paragraph
by setting the text-indent property @.

To add indents:

Type text-indent: length, where length
is a number with units, as in 1.5em or 18px.

A negative value creates a hanging
indent. You may need to increase the padding
or margins around a text box with a hanging
indent in order to accommodate the overhang-
ing text. (See “Adding Padding around an
Element” and “Setting the Margins around an
Element” in Chapter 11.)

Em values, as usual, are calculated with
respect to the element’s font size. Percentages
are calculated with respect to the width of the
parent element.

The text-indent property is inherited.

If you use a percentage or an em value,
only the resulting size (or “computed value”) is
inherited. So, if the parent is 300 pixels wide,
a text-indent of 10% will be 30 pixels. And
all child elements will also have their first lines
indented 30 pixels, regardless of the width of
their respective parents.

Use a value of 0 to remove an inherited
indent.

Formatting Text with Styles 265

Setting White
Space Properties

By default, multiple spaces and returns in
an HTML document are either displayed as
a single space or ignored. If you want the
browser to display those extra spaces, use
the white-space property.

To set white space properties:
1. Type white-space:.

2. Type pre to have browsers display all
the spaces and returns in the original
text.

Or type nowrap to treat all spaces as
non-breaking.

Or type normal to treat white space as
usual.

o The nowrap value for white-space treats
spaces as non-breaking.

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,

serif;
}
h1,
h2 {
color: navy;
font: 1.375em "Arial Black", Arial,
sans-serif;
letter-spacing: .4em;
}
h2 {
font-size: .9375em;
}
pi{
font-size: .875em;
line-height: 1.6;
text-indent: 1.5em;
}
.intro {
white-space: nowrap;
}

... [rest of CSS] ...

266 Chapter 10

0 For demonstration purposes only, I've added
an intro class so you can see how nowrap affects
the display of the first paragraph.

<h1 id="gaudi">Barcelona's Architect</h1>

<p class="intro">Antoni Gaudi's
incredible buildings bring millions of
tourists to Barcelona each year.</p>

<p>Gaudi's non-conformity, already
visible in his teenage years, coupled
with his quiet but firm devotion to
the church, made a unique foundation
for his thoughts and ideas...</p>

) Ak Gesudi - Tntroduction - Mueilla Firelas =l0fx
e e Vew oy [kokmads bl bk

eknni Gauel - ntrochiction | + .

* Bacelona's Ardiedd

® LaSagrada Familia

® Pak Guell
Barcelona"s Architect

Antond Gaudi's incredible buildings bring millions of tourists to Barcelona each y

Family and its orgarae, bulbe

La Sagrada Familla

4 |

G The first paragraph won’t wrap, even when the
browser window is too narrow to display the entire
line. As a result, a horizontal scrollbar appears.

As an example, I've shown how to apply
the nowrap value to the first paragraph (@
and @). As you can see, it prevents the
line from wrapping @. However, since we
don’t really want this effect in our page, I'll
omit the class and associated CSS from
subsequent examples.

The value of pre for the white-space
property gets its name from the pre element,
which displays text in a monospace font while
maintaining all of its spaces and returns. The
pre element, in turn, got its name from the
word “pre-formatted.” You can find more infor-
mation about pre in Chapter 4.

Note that the pre value for the
white-space property has no effect on an
element’s font (in contrast with the pre ele-
ment, which browsers display in a monospace
font by default).

You may use the br element to manu-
ally create line breaks in an element styled
with white-space:nowrap. Having said that,
it’s best to avoid using br unless you have no
alternative, because it mixes presentation with
your HTML instead of letting CSS take care of
it. For details about the bx element, consult
“Creating a Line Break” in Chapter 4.

Formatting Text with Styles 267

Aligning Text

You can set up text so that it always aligns

right, left, center, or justified, as desired 0.

To align text:
1. Type text-align:.
2. Type left to align the text to the left.

Or type right to align the text to the
right.

Or type center to center the text in the
middle of the screen.

Or type justify to align the text on
both the right and the left.

o The alignment of the heading and paragraph
text is adjusted after these changes. Don’t forget
the hyphen in text-align.

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,

serif;
}
hi,
h2 {
color: navy;
font: 1.375em “"Arial Black", Arial,
sans-serif;
letter-spacing: .4em;
text-align: center;
}
h2 {
font-size: .9375em;
}
p{
font-size: .875em;
line-height: 1.6;
text-align: justify;
text-indent: 1.5em;
}

... [rest of CSS] ...

268 Chapter 10

) Ak Gaud - Introduction - =esila Firefes

La Sagrada Familia

Vo lly Tl

0 After the changes, the headings are centered,
while the paragraph text is justified.

If you choose to justify the text, be aware
that the word spacing and letter spacing may
be adversely affected. For more information,
see “Controlling Spacing.”

Note that the text-align property

can only be applied to elements that are set
to display: block or display: inline-
block. Elements like p and div are set to
display: block by default. Prior to HTMLS5,
those types of elements were known as block-
level elements. Their default setting still holds
in HTMLS5, but they aren’t dubbed block-level
anymore so as not to equate HTML seman-
tics with appearance. So this point primarily
applies to phrasing content (“inline” elements
in pre-HTML5 days) such as strong, em, a,
cite, and the others that appear within the
context of sentences, headings, and so on. If
you want to align these elements individually
rather than along with their surrounding text,
you must first override their default display:
inline style with either display: block or
display: inline-block and then set text-
align accordingly. For those with display:
inline-block, you may need to add a width
to see the effect. In truth, the occasions you’ll
have a need to set text-align on “inline”
content are pretty limited.

The text-align property is inherited.

Its default value is supposed to depend on the
document’s language and writing system, but
in most cases it’s indiscriminately set to left.

Formatting Text with Styles 269

Changing the
Text Case

You can define the text case for your style
by using the text-transform property @.
In this way, you can display the text with ini-
tial capital letters, with all capital letters @,

with all lowercase letters, or as it was typed.

To change the text case:
1. Type text-transform:.

2. Type capitalize after the colon () to
put the first character of each word in
uppercase.

Or type uppercase to change all the
letters to uppercase.

Or type lowercase to change all the
letters to lowercase.

Or type none to leave the text as is (pos-
sibly canceling out an inherited value).

@D The capitalize value has its limita-
tions. It doesn’t know when a language’s word
shouldn’t be capitalized by convention, it just
capitalizes every word. So, text in your HTML
like “Jim Rice enters the Hall of Fame” would
render as “Jim Rice Enters The Hall Of Fame.”

Why use text-transform if you can just
change the text in the HTML? Well, sometimes
the content is beyond your reach. For example,
it could be stored in a database or pulled from
another site’s news feed. In those cases, you’re

dependent on adjusting the text case with CSS.

Also, if you want text to be all caps, use text-
transform: uppercase most of the time.
Search engines typically index the text as it’s
typed in the HTML, and the text may be more
legible in search results in standard case.

The lowercase value can be useful
for creating stylish headings (or if you’re e.e.
cummings).

The text-transform property is
inherited.

o I've decided to display the level 1 heading in all
uppercase letters for emphasis

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,

serif;
}
h1,
h2 {
color: navy;
font: 1.375em "Arial Black", Arial,
sans-serif;
letter-spacing: .4em;
text-align: center;
}
h1 {
text-transform: uppercase;
}
h2 {
font-size: .9375em;
}

... [rest of CSS] ...

1) Ardoni Lasidi - Introduction - Mazilla Firefar . 101 x|

Db Ede vew hgory Qockmads Dok e
Arkiord asud - Inkroduction |

* Hacclona's Archited
* Ladeerals Fosks
* LakGuell

BARCELONA'S ARCHITECT

Sacred Family and it

0 Now the heading really stands out.

270 Chapter 10

o I've changed h2 to small-caps and have also
taken the opportunity to bump up the font size a
bit so it’s in better proportion to the h1 0 Don’t
forget the hyphen in both font-variant and
small-caps.

body {
background: #eef;
color: #909;
font: 100% "Palatino Linotype", Palatino,
serif;
}
h1,
h2 {
color: navy;
font: 1.375em “"Arial Black", Arial,
sans-serif;
letter-spacing: .4em;
text-align: center;
}
h1 {
text-transform: uppercase;
}
h2 {
font-size: 1.15em;
font-variant: small-caps;
}
... [rest of CSS] ...

73 Ainbom (s - Intraduetion - Mozl Firelos alpi x|
B B Yew My pohnls Beb e

Betur Gourd Vrohaen |#

BARCELONA'S ARCHITECT

LA SAGRADA FamiLia

Ve ly Bl

0 Now you see small caps for each h2 letter. The
rendering of small caps may vary a tiny bit from
browser to browser.

Using Small Caps

Many fonts have a corresponding small
caps variant that includes uppercase ver-
sions of the letters proportionately reduced
to small caps size. You can invoke the
small caps variant with the font-variant

property @.

To use a small caps font:

Type font-variant: small-caps.

To remove small caps:

Type font-variant: none.

Small caps are not quite as heavy as
uppercase letters that have simply been
reduced in size.

Not all fonts have a corresponding small
caps design. If the browser can’t find such a
design, it has a few choices. It can fake small
caps by simply reducing the size of uppercase
letters (which tends to make them look a bit
squat), it can forget about small caps alto-
gether and display the text in all uppercase
(similar to text-transform: uppercase,

as described earlier), or, theoretically, it can
choose the next font in the list to see if it has a
small caps design (though I've never seen this
happen).

The font-variant property is inherited.

Formatting Text with Styles 271

Decorating Text

Style sheets let you adorn your text with
underlines and lines through the text (per-
haps to indicate changes) @.

Q Here’s the entire style sheet for the page 0 including the text-decoration changes to the links.
However, you don’t have to restrict underlining or other text decorations to a elements. They can be applied to
other elements too.

body { em {
background: #eef; font-weight: bold;
color: #909; }
font: 100% "Palatino Linotype", Palatino,
serif; /* Links */
} a:link {
color: #74269d;
h1, font-weight: bold;
h2 { text-decoration: none;
color: navy; }
font: 1.375em “"Arial Black", Arial,
sans-serif; a:visited {
letter-spacing: .4em; color: #909;
text-align: center; text-decoration: none;
} }
h1 { a:hover {
text-transform: uppercase; color: #c3f;
} font-weight: bold;
text-decoration: underline;
h2 { }
font-size: 1.15em;
font-variant: small-caps; /* Table of Contents navigation */
} toc {
background: #ebc6f9;
p{ }
font-size: .875em;
line-height: 1.6; .toc a {
text-align: justify; font-size: .75em;
text-indent: 1.5em; }
}

code continues in next column

272 Chapter 10

=10 x}
Bin it yew Moy ooknads pok Heb
T — &l
* Darcelona’s Axdiitect
® LaSagrads Fansa
® Fak Coed

BARCELONA"S ARCHITECT

to Barcelona sach year,

in Ayn Rand's The Fountainlead, Gaudi's

nunity whose residents would love where

in Ayn Rand's The Fumﬁm'ufmni. Gaudi's
nunity whose residents Yould love where
0 In the top image, you can see that the
underline is removed from all links, including those
in the table of contents. Farther down the page is
another link, which is in italics because it’s the title
of a book, so | marked it up with a cite element
inside the link (default styling of cite is italic). The
bottom image shows the underlining | added to
links that are being hovered over to encourage the
user to take action. | set the a:hover color to #c3f
earlier in the chapter.

To decorate text:
1. Type text-decoration:.

2. Type underline after the colon (:) to
underline text.

Or type overline for a line above
the text.

Or type 1ine-through to strike out
the text.

To get rid of decorations:

Type text-decoration: none;.

You can eliminate decorations from ele-
ments that normally have them (like a, del, or
ins) or from elements that inherit decorations
from their parents.

While it’s perfectly fine to remove under-
lines from links, be sure to distinguish them
sufficiently from surrounding text another way,
or visitors won’t know they’re actionable.

Formatting Text with Styles 273

This page intentionally left blank

Layout with Styles

You can create a wide variety of layouts
with CSS. This chapter demonstrates how
to build a common layout type: a masthead
on top, two columns of content, and a
footer on the bottom @) (on the next page).
However, you can apply the CSS proper-
ties you'll learn about to make vastly differ-
ent layouts.

I won’t show every line of CSS in this
chapter. For instance, most of the text
formatting was done ahead of time.
Please see the complete code at
www.bruceontheloose.com/htmlcss/
examples/chapter-11/finished-page.html.

| also created a fixed-width (with no fluid
interior) version called finished-page-fixed-
width.html so you can see how that could
be achieved. I've included a lot of com-
ments in all of the files (especially the style
sheets) to help explain the code.

In This Chapter

Considerations When Beginning a Layout
Structuring Your Pages

Styling HTML5 Elements in Older Browsers
Resetting or Normalizing Default Styles
The Box Model

Changing the Background

Setting the Height or Width for an Element
Setting the Margins around an Element
Adding Padding around an Element
Making Elements Float

Controlling Where Elements Float

Setting the Border

Offsetting Elements in the Natural Flow
Positioning Elements Absolutely
Positioning Elements in 3D

Determining How to Treat Overflow
Aligning Elements Vertically

Changing the Cursor

Displaying and Hiding Elements

276
279
286
290
292
294
298
302
304
306
308
31
314
316
318
320
322
323
324

www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html
www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html

Considerations When
Beginning a Layout

Here are a few things to help you along as
you lay out your own sites and hone them
before releasing them into the wild.

Separating content and presentation

m As a best practice, always separate
your content (HTML) and presentation
(CSS). You learned how to do this in
Chapter 8 by linking to an external style
sheet. If you do so from all your pages,
they can all share the same layout and
overall style. This also makes it easier
to change the design of the whole site
at a later date, simply by modifying the
CSS file or files.

Browser considerations

m Not all visitors will use the same
browser, operating system, or even
device when accessing your site. So, in
most cases, you will want to test your
pages on a range of browsers before
making them live on your server. | rec-
ommend testing a page in a few brows-
ers periodically as you develop it so
you’ll have fewer issues to address at
the end when you perform comprehen-
sive testing. See “Testing Your Page” in
Chapter 20 for information about both
how to test your pages and the brows-
ers in which to test them.

m Sometimes it is necessary to write CSS
rules for specific versions of IE to fix dis-
play issues caused by IE’s misbehavior.
This is especially the case for IE6 and,
to a lesser extent, IE7.

There are a few ways to do this, but the
best from a performance standpoint is to
use conditional comments to create IE

- AV VY U o
photobarcelona...

0 This page, with two fluid columns, a header,
and a footer, was laid out with CSS. It is explained
step by step throughout this chapter.

276 Chapter 1

version-specific classes on the html ele-
ment that you can leverage in your style
sheets. See http://paulirish.com/2008/
conditional-stylesheets-vs-css-hacks-
answer-neither/ for details. There’s a
fair amount to parse there, so if you're
wondering which code to use, it follows
the “Throw it on the html tag” head-

ing (read the notes after the code too).
Another approach is to use conditional
comments to deliver the |IE patches in a
separate style sheet or sheets.

I've provided an example of both tech-
niques in the book site’s code samples.
The first approach is in finished-page.
html (see this chapter’s intro), and the
second is in finished-page-conditional-
stylesheets.html in the same directory.
Learn more about conditional com-
ments at www.quirksmode.org/css/
condcom.html.

Layout approaches
There are several ways to do a layout.

m A fixed layout has pixel-based widths
for the whole page and for each column
of content. As its name suggests, its
width doesn’t change when viewed
on smaller devices like mobile phones
and tablets or when a desktop browser
window is reduced. Chances are you've
seen many fixed layouts when browsing
the Web, particularly on corporate and
big-brand sites. Fixed layouts are also
the easiest to get the hang of when
learning CSS.

m A fluid (or liquid) layout uses percent-
ages for widths, allowing the page to
shrink and expand depending on the
viewing conditions. This approach
has been enhanced of late to create
responsive and adaptive layouts, which
can not only shrink for phones and

Layout with Styles 277

http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
www.quirksmode.org/css/condcom.html
www.quirksmode.org/css/condcom.html
http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/

tablets like traditional fluid layouts, but
also shift their design in specific ways
based on the screen size. This allows for
tailoring the experience to mobile, tab-
let, and desktop users independently,
but with the same HTML, not with three
different sites. (Ethan Marcotte created
the term “responsive Web design” and
the package of techniques behind it.
See his article on A List Apart to get

a taste: www.alistapart.com/articles/
responsive-web-design/. He goes into
greater detail in his book Responsive
Web Design, which | highly recommend.
An adaptive layout uses some of the
same techniques.)

An elastic layout uses ems for both
width and all other property sizes, so
the page scales according to a user’s
font-size settings.

There is no single layout approach that is
right for every circumstance, and, in fact,
there are even hybrid approaches. This
chapter teaches you how to make a hybrid
of a fluid and fixed layout: the columns
have fluid, percentage-based widths so
they grow and shrink, but the overall page
width has a fixed maximum width that limits
how wide it can grow.

278 Chapter 11

www.alistapart.com/articles/responsive-web-design/
www.alistapart.com/articles/responsive-web-design/

Structuring Your Pages

The whole point of using CSS is to sepa-
rate the formatting and styling rules from
the content of your page. This makes
your pages easier to maintain and gives
them the flexibility to work well in differ-
ent browsers, platforms, and devices, or
even in print. Just as it does with styling
text, CSS provides great variety in how
you present the overall layout of your
pages. You apply CSS to the content
containers that represent a page’s primary
structural elements, which you learned
about in Chapter 3 @) (on the next page).
With CSS, your masthead, main content
area, sidebar (or two), page-level footer,
and so on come to life visually.

To structure your page:

1. Divide logical sections of your docu-
ment into article, aside, nav, section,
header, footer, and div elements, as
appropriate. Apply ARIA landmark roles
as desired. See Chapter 3 for more
details on both. In €9, you have:

» container and page divs that are
used to apply some design and wrap
the page

» A header for the masthead, which
contains the logo, slogan, search
form, and main navigation

» A main div divided into multiple
entry section elements to contain
the main content

» A sidebar div to house a monthly
opinion column and archive links in
the right column

» A page-level footer element for an
“about” blurb

(continues on page 282)

Layout with Styles 279

o This is the document | use throughout this chapter. There are four main sections (masthead, main, sidebar,
and footer) enclosed in two outer wrapper containers (container and page). You can find the complete file

on my Web site (www.bruceontheloose.com/htmlicss/examples/chapter-11/finished-page.html). By default, the
page is plain but still functional 0

<body>

<div id="container">

<div id="page">
¢l-- ==== START MASTHEAD ==== -->
<header id="masthead" role="banner"s>
<p class="logo ">photobarcelonadhellip; capturing barcelona's cultural
treasures on film</p>

<div>
<nav role="navigation">
. [list of links] ...
</nav>

<form method="get" role="search">
</form>
</div>

</header>
<!-- end #masthead -->

<l-- ==== START MAIN CONTENT ==== -->
<div id="main" role="main">
<h1>Recent Entries</h1>
<l-- Start Entry #1 -->
<section class="entry">
<header>
<h2 lang="es">Hospital Sant Pau</h2>
<p class="date"><time datetime="2011-06-26" pubdate="pubdate">June 26, 2011</time></p>
</header>

. [image] ...

<div class="intro">
<p>The Saint Paul Hospital at the top ...</p>

<p class="continued">continued</p>
</div>
</section>
<l-- end .entry #1 -->

<l-- Start Entry #2 -->
<section class="entry">
</section>

<l-- end .entry #2 -->

code continues on next page

280

Chapter 11

www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html

o continued

<l-- Start Entry #3 -->
<section class="entry">

</section>

<l-- end .entry #3 -->
</div>
<!-- end #main content -->

¢l-- ==== START SIDEBAR ==== -->
<div id="related" class="sidebar" role="complementary">
<aside class="excerpt">
<h2>From my Window</h2>

</aside>

<aside class="archive"»
<nav role="navigation">
<h2>Archive</h2>
... [list of links] ...

</nav>
</aside>
</div>
<!-- end #sidebar --»

¢l-- ==== START FOOTER ==== -->
<footer id="footer" role="contentinfo">
<h1>about this photoblog</h1>

... [list of images] ...
</footer>
<!-- end #footer -->
</div>
<l-- end #page -->
</div>
<!-- #container --»
</body>
</html>

Layout with Styles

281

2. Put your content in an order that would
be the most useful if the CSS were not
used @. For example, the masthead,
followed by the main content, followed
by one or more sidebars, followed by
the page-level footer. This can make
it easier for you to provide the most
important content on top for visitors on
smaller screens like smartphones and
tablets (and for users on older mobile
devices that don’t support CSS). You
want to get the main content to them
without making them scroll too far. In
addition, search engines “see” your
page as if CSS weren’t applied, so if
you prioritize your main content, they’ll
be better able to properly index your
site. Lastly, screen readers access
content the same way—by the order of
your HTML (users often hop between
headings rather than listen to the entire
page, but either way they’d reach your
main content sooner).

3. Use heading elements (hi—h2) consis-
tently to identify and prioritize informa-
tion on your page within the sections.

4. Use comments as desired to identify
different areas of your page and their
contents. As @) shows, my preference
is to use a different format for com-
ments that mark the start, rather than
the end, of a section.

) photobarcelona - Liz Castro's photographs and blog about Bars
Die [l Wew Hgtory [Qockmads Bl Hep
photcharcelons - L Castro's photngraphs & | |

photohareelona raptunng hareelona's culral treasures an flm

Recent Entries

Hospital Sant Pau

June 26, 2011

‘The Samt Paul Hospital at the top of Gaudi Avenue n the Sagrada Familia

whborthood s an oft looked gem of modermmst architeciure, Although the
building was begun in 1902 under the direction of the architect Lhds Doménec i
Meontaner, the hospital itself dates from the 14th century It serves some 34,000
inpatientz yearly, along with mare than 150,000 emergency room

contued

Cathedral Cloister

Jume 24, 2011

0 Here’s what our example looks like with no
styles except the browser’s default. Thanks to
its solid semantics, it is perfectly usable and
intelligible, if a bit spartan.

282 Chapter

You don’t have to mark up your entire
page before you apply CSS. In practice, it’s not
uncommon to do the HTML for a section and
then some or all of its CSS, then the same for
the next section, and so on. It’s really a mat-
ter of personal preference and what process
works best for you. For the example in this
chapter, I’'ve marked up all the content with
HTML before styling it.

You may have noticed | used section
elements in the example ;) to contain each
partial blog entry. Had they been complete
entries, | would have marked them up with
article instead, just as | would for pages
dedicated to individual, complete blog entries.
My thinking in that case would be that | could
potentially syndicate a complete blog posting,
not just the introductory portion included in
the example partial entries. Using article for
these instead of section wouldn’t be wrong,
just an indication that the snippets would be
appropriate for syndication. See Chapter 3 for
a variety of examples that use article and
section both together and individually.

Layout with Styles 283

Styling Elements with ARIA Landmark Roles in CSS Selectors Instead of ids
The example page (Y includes ARIA landmark roles on appropriate elements. In Chapter 9,

| suggested avoiding or minimizing your use of ids for styling purposes (see the sidebar in that
chapter’s “Selecting Elements by Class or ID” section).

It is possible to use the landmark roles in your CSS selectors in some cases where you might oth-
erwise be inclined to reference ids.

Let’s use the page footer from () as an example. Here’s the HTML:

<footer id="footer" role="contentinfo">
... page footer content ...
</footer>

And some abbreviated corresponding CSS that uses id selectors:

#footer {
border-top: 2px dotted #b74e07;
clear: both;

#footer h1 {
maxrgin-bottom: .25em;
}
Now, let’s simplify the HTML by removing id="footexr", since it was only there to style the footer
(rather than as an anchor link pointing to the footer).

<footer role="contentinfo">
... page footer content ...
</footer>

284 Chapter 11

Styling Elements with ARIA Landmark Roles (continued)
Landmark roles are attributes, so you can use them in attribute selectors.

footer[role="contentinfo"] {
border-top: 2px dotted #b74e07;
clear: both;

footer[role="contentinfo"] h1 {
margin-bottom: .25em;

}

The first rule says, “Find the footer element with a role attribute that equals contentinfo.” The
second rule says, “Find the ha element within the footer element with a role attribute that equals
contentinfo.”

The results are exactly the same as the previous CSS that used id selectors.

You can do the same thing with other elements that contain landmark roles, and I've provided a

version of this chapter’s example page that does just that: www.bruceontheloose.com/htmlcss/

examples/chapter-11/finished-page-selectors-with-landmark-roles.html. See a related discussion
by Jeremy Keith at http://adactio.com/journal/4267/.

Please note that IE6 does not support attribute selectors, so this approach may not be for you,
depending on your audience.

One important reminder: It’s critical that you use the landmark roles only where appropriate within
your pages. Do not add one simply to have a hook for applying styles to an element. Use a class
in that instance instead. See "Improving Accessibility with ARIA" in Chapter 3 for a refresher on
landmark roles.

Layout with Styles 285

www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page-selectors-with-landmark-roles.html
www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page-selectors-with-landmark-roles.html
http://adactio.com/journal/4267/

Styling HTML5
Elements in Older
Browsers

As you know, HTML5 introduces several
new semantic elements, most of which you
learned about in Chapters 3 and 4. In many
cases, modern browsers support those ele-
ments natively. From a styling point of view,
that means these browsers apply default
styles to the new elements just as they

do for HTML elements that have existed
since the earliest days of the language.

For example, elements such as article,
aside, nav, and section (as well as some
others) display on their own line, just like
div, blockquote, p, and others that were
defined as block-level elements in versions
of HTML before HTML5.

You might be wondering, “What about
older browsers? How can | use the new
HTML5 elements if they didn’t exist when
those browsers were created?”

Well, the good news is that most browsers
allow you to style elements that they don't
yet support natively. Internet Explorer is the
exception, but there’s an easy workaround
that | describe in step 2. So follow the three
easy steps in the next section to begin styl-
ing pages that have HTML5 elements.

To style new HTML5 elements

in all browsers:

1. Add the following code to your site’s
main style sheet file (the one that all
pages use):

article, aside, figcaption,
figure, footer, header,
hgroup, menu, nav, section {

display: block;

286 Chapter 11

About the HTML5 Shiv

Unlike other mainstream browsers, Inter-
net Explorer 8 and older ignore CSS on
elements they don’t support natively.

Fortunately, there’s a way to make
these versions of IE recognize the ele-
ments—you use JavaScript's document
.createElement("elementname")

for each element, a discovery made

by Sjoerd Visscher. For instance,
document.createElement("aside")
makes IE understand the aside element,
and then the style rule in step 1 of “To
style new HTML5 elements in all brows-
ers” (and any other styles you create)
takes effect.

John Resig documented this approach,
dubbing it the HTMLS5 shiv (it’s also
referred to as the HTML5 shim). But
thankfully, you don’t have to write that
JavaScript for each new HTML5 element
yourself, because Remy Sharp bundled
John’s approach into a JavaScript file
and made it available to the community
at html5shiv.googlecode.com/svn/trunk/
html5.js. Subsequent contributors have
enhanced it.

Using the HTML5 shiv couldn’t be easier.
Simply link to the file, as shown in the
highlighted code in step 2 of “To style
new HTML5 elements in all brows-

ers.” (The part of the code that reads

[if 1t IE 9] means that only versions
less than IES load the file. This is known
as a conditional comment.)

The HTMLS5 shiv has also been bundled
into some JavaScript libraries, like Mod-
ernizr (www.modernizr.com/). So if you
add Modernizr to your pages, you won’t
need to load the HTML5 shiv separately.
Incidentally, Modernizr is a very handy
library that allows you to detect whether
a browser supports various HTML5 and
CSS3 features. Check it out!

Why: Most browsers treat elements
they don’t recognize as inline elements
by default. So this bit of CSS forces the
new HTML5 “block-level-like” semantics
to render on their own line (IE needs
more help, described in the next step).
display: block; is the same declara-
tion applied to div, blockquote, p, and
others by each browser’s built-in default
style sheet.

. To get the styling of new HTML5 ele-

ments to work in Internet Explorer prior
to version 9, add the following high-
lighted code to the head element (not
the header element) of each of your
pages, preferably after you link to your
CSSfiles:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>photobarcelona</title>
<link rel="stylesheet" href=
"assets/css/base.css" />
<!--[if 1t IE 9]>
<script src="http://html5shiv.
googlecode.com/svn/trunk/
html5.js"></script>
<![endif]-->
</head>
<body>

See the sidebar “About the HTML5
Shiv” to understand why this is neces-
sary and what it does.

. Now, style away with CSS as you

please!

You may run into the occasional glitch
while styling elements, but you'll be in
good shape for the most part.

Layout with Styles 287

www.modernizr.com/

There is one drawback to this approach
and these alternative options. Because
styling HTML5 elements in IE6 through IE8
requires JavaScript, users whose browsers
don’t support JavaScript or have it dis-
abled will see unstyled and possibly messy
HTML5 elements. You might be OK with
this risk if it’s one of your own sites; many
designers and developers are. However,

if you're doing work for a client, you may
want to get their clearance before you use
the HTML5 elements that are intended to
display as blocks. They may also have user
analytics concerning browser usage to
inform the decision.

Alternative approaches:

m [fyou aren’t comfortable using article,
section, nav, and the others listed in
step 1 above, you can use div for all
your containers instead. This is how
people built sites before HTML5 was
introduced. It’s true that you'll reduce
the semantic richness of your site, but
it is an acceptable approach. Some
even choose to use classes that mimic
the new HTML5 element names to get
accustomed to the new elements. For
instance:

<div class="header">...</div>
<div class="article">...</div>

<div class="section">...</div>

and so on.

288 Chapter 11

AW A ACSET
photobarcelona...

recent entries

Hopital Sant Pau
Cathedral Clakster

0 The page in IE6 when JavaScript is disabled,
preventing the HTML5 shiv JavaScript file from
executing. The masthead area looks a little
broken, but the page on the whole is intact.

m If you do use the new elements, you
can write CSS selectors that target
other elements as much as possible to
reduce the impact when JavaScript is
off. 've done that often with the page
layout in this chapter. It doesn’t look the
same in IE6 when JavaScript is dis-
abled, but it’s not unusable either @.

You may download html5.js (the
HTMLS5 shiv file) and add it to the files in your
site instead of pointing to http://htmi5shiv.
googlecode.com/svn/trunk/htmi5.js. But it is
updated periodically, so it's not a bad idea to
load it from Google Code instead by using the
code in step 2 of "To style new HTMLS5 ele-
ments in all browsers."

Layout with Styles 289

http://html5shiv.googlecode.com/svn/trunk/html5.js
http://html5shiv.googlecode.com/svn/trunk/html5.js

Resetting or
Normalizing
Default Styles

As mentioned, each browser has a built-in
style sheet that dictates the presentation of
your HTML unless you write your own CSS
to override it. The default browser styles
are fairly similar on the whole, but they
have enough differences that it's common
for developers to level the playing field
before they apply their own CSS.

There are two main ways to level the play-
ing field:

= Begin the main style sheet with a CSS
reset, like the Meyer reset created by
Eric Meyer (http://meyerweb.com/eric/
tools/css/reset/). There are also other
reset style sheets available.

m Begin the main style sheet with
normalize.css, created by Nicolas
Gallagher and Jonathan Neal. Find it at
http://necolas.github.com/normalize.css/
(follow the “Get the normalize.css file”
link).

=1of =]

) photobarcelona - Liz Lastro’s photographs and bl
Hie Edt wew Hgtory Bookmarks ook Help

Liz Castro’s 2., [EH | *
a2 raphiing barcelona's cuthwal treasires on Blm =
TESOUrCES
archives
Search: [architocture, Gaudl oic | @0
Eecent Entnies
Hoapital Sant I'au

June 26 A071
. o

@

The Saint Faul Hospital at the top of Gaudi Avcnuc in the Sagrada Famdia
neighborhood i an oft-overdooked gem of modermst architechire

Ailtbieugh the bullding was begun m 1902 under the direction of the

architect Liuls Domeénec i bfontaner, the hospital itzelf dates from the 14th
century It serves some 34,000 inpatients vearly, along with mere than
150,000 emergency room

contmued

Cathedral Cloister |
June 24, 2011

o Here's our example page with a reset applied
to it. The most obvious differences are that all font
sizes are the same and all margins and padding
are set to zero.

290 Chapter 1

http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/

) phatobarcclona Liz Castro’s photographs and blog abouk B ~=lof x|

photobarcelona. .. capturing barcelona's cultural treasures on film

home
about
resources
archives

Search, farchitscly

Recent Entries

Hospital Sant Pau

June 26, 2011

Ther Saint Panl Hospital ar the top of Gaudl Avenoe in the Sagrada
[amiia neighborhood is an off-overlooked gem of modemist
architecture Althaugh the building was begun in 1902 under the
direction of the architect Liuis Domeénac i Maontaner, the hospital
itself dates from the 14th century. It serves some 34 000 inpatents
yearly, along wath more than 150,000 emergency roam. ..

continued
Cathedral Clolster

June 24,2011 |

0 Here’s the example page using normalize.css
instead of the reset. It's similar to the unstyled,
default rendering, but there are differences. More
to the point, this version would look very similar if
you were to view it in today’s common browsers.

)t el - 1 & astes il oge st and bl sbout fareekons - Sl bl =101 =}

B Bk fow ooy Gocmrk Bob e
ehatobarcelona - Lis Castra's photogrephs a. | &

photobarcelona... . umivmrsmn |
home
about

Taan E ; + s
recent entries
Hospital Sant Pau

Cathedral Cloister

June 24, 2011

G Here’s the example page with the reset and
text formatting applied. You’ll begin styling the
rest of the page from here, evolving it as you step
through the chapter.

A CSS reset effectively sets all the default
element styles to “zero” @). The second
method, normalize.css, takes a different
approach. Instead of resetting everything,
it tweaks the default styles so they look
very similar across browsers @.

You aren’t required to use either of these
approaches. It’s perfectly fine if you just let
the browser defaults remain and write your
CSS accordingly.

For this chapter, | have used the Meyer
reset and have styled the text to get the
page started. So before applying the
remaining styling described in this chapter,
the page looks like @®. Because I've used
the reset, you’ll be able to see more explic-
itly how the CSS shown in this chapter
affects the layout. And by following along
in the chapter, you'll learn how to lay out a
page when using a reset, a valuable skill
given the popularity of this approach.

Layout with Styles 291

The Box Model

CSS treats your Web page as if every
element it contains were enclosed in an
invisible box. The box is made up of a con-
tent area, the space surrounding that area
(padding), the outside edge of the padding
(border), and the invisible space around
the border that separates one element
from the next (margin). It's sort of like a
framed picture on a wall, where the picture
is the content, the matting is the padding,
the frame is the border, and the distance
between that frame and the next one is the
margin @.

You can use CSS to determine both the
appearance and the position of each
element’s box, and in so doing, you have
considerable control over the layout of
your Web page ©.

As discussed in Chapter 1, by default an
element’s box may be block-level (thereby
starting on a new line like a new para-
graph) or inline (not generating a new
line). This trait governs the initial layout of
the Web page: By default, elements are
displayed in the same order as they appear
in the HTML code from top to bottom—this
is known as the document flow—with line
breaks at the beginning and end of each
element that is styled as block-level

margin-top
border-top
i padding-top |
| B !
. 5
&~ a~ = Q! o 3
3 9.2 = background S 8 3
S §5iL I
S 8S| § CONTENT 2% 3
5 §5:8| < LR
Qiv Q Q Q
g€ 918 l 8.5 S

padding-bottom

border-bottom

margin-bottom

o Each element’s box has four important
properties that determine its size: content area,
padding, border, and margin. You can control each
property individually.

The space between the
content area and the border
is the padding. (Here there
is padding of 10 pixels on

all sides.) The background
color fills both areas.

The sidebar
content area.
No explicit width
or height is
specified in the
CSS in this case.

FiF
photobarcelona... s [

recent entries

The margin is the invisible
space beyond the border. edge is the
(Here there’s a left margin of border. (This
72 percent of the container box has no
around the entire page.) border.,)

The outside

0 The box model in the context of the sidebar in
our page.

292 Chapter

Do [t Yew Hgoy Doohmarks ok Leb
| photobarcelons - Lz Castro's photagraphs & |+;

photohareelona captunng bareelona's enlmral treasures an flm

Recent Entries

Hospital Sant Pau

June 26, 2011

Thr Samt Paul Hospital at the top of Gaudi Avenue in the Sagrada Famila

fis an oft ked gem of modermmst architeciure, Although the
hmldm‘g was begun in 1902 under the direction of the architect Lhds Doménec i
Montaner, the hospital itself dates from the [4th century It serves some 34,000
inpatientz yearly, along with mare than 150,000 emergency room

contued

Cathedral Cloister

Jume 24, 2011 =l

o Remember the example page from the begin-
ning of the chapter before | applied any styles? This
is the document flow of the page. And the order
hasn’t changed as a result of styling the text

) it nhaer el - 1 §astra's ot ngraplt acd biog sboul Harcekons - & wient 1ol
B B Yow Hygey Bkl Buh oo
Bhatobarceions - Uz Castro's photograpre 3. | o

photobarcelona... .. wmssmomn in

homs
about
resources

archives

Taarth + A s
recent entries
Hospital Sant Pau

bui Idl g WA
Maontaner, the
Inpatients vearly;

ang with more than 150,000 emergency roam

Cathedral Cloister =1

Q Here’s the styled page to this point. The normal
flow is still intact because I've only styled the text
so far.

There are four principal ways to position
an element box: You can leave the box in
the flow (the default, also called static; this
is what you’ll do most of the time), you can
remove the box from the flow and specify
its exact coordinates with respect to either
its parent element (absolute; to be used
carefully) or the browser window (fixed,
even less common in practice), or you can
move the box with respect to its default
position in the flow (relative; somewhere in
between). In addition, if boxes overlap one
another, you can specify the order in which
they should do so (z-index).

You can also control its appearance,
including its background, padding, border,
margin, width, height, alignment, color,
and more. We’ll discuss all of these in this
chapter.

Note that some layout properties, particu-
larly em and percentage values, are rela-
tive to an element’s parent. Remember that
a parent is the element that contains the
current element (see “Parents and Chil-
dren” in Chapter 1).

The illustration in) was inspired by
Rich Hauck’s box model diagram (which is
itself inspired by the one in the CSS spec):
www.mandalatv.net/itp/drivebys/css/.

Layout with Styles 293

www.mandalatv.net/itp/drivebys/css/

Changing the
Background

As you learned in Chapter 10 (“Chang-
ing the Text’s Background” and “More on
Backgrounds”), you can style the back-
ground of the entire page and individual
elements @. This includes nearly every
element, even forms and images (yes, an
image can have a background image!).

To use a background image:
1. Type background-image:.

2. Then type url(image.png), where
image.png is the path and name of
the image that should be used for the
background (. Or type none to use no
image at all, as in background-image:
none; (you’d only use this when overrid-
ing another style rule that’s applying a
background image to the element).

To repeat a background image:

Type background-repeat: direction,
where direction is either repeat (to tile
the image both horizontally and vertically),
repeat-x (to tile the image horizontally),
repeat-y (to tile the image vertically) &9, or
no-repeat (to not tile the image at all).

o First, you apply a background image to the
outermost container, the div with id="container".
Then you repeat it vertically (the y-axis). This is the
long way to define background styles—specifying
each property in its own declaration. In order to
keep my code as compact as possible, my style
sheet actually uses the shorthand notation shown
in 0 instead. Either way, the results are not
particularly attractive in the example page G

#container {
background-image:
url(../img/bg-bluebench.jpg);
background-repeat: repeat-y;

0 You can use the shortcut background property
described in Chapter 10 and on the next page to
apply more than one background-related property
at once. | recommend you use shorthand notation
whenever possible, though there are situations
where it makes sense to specify individual
properties. Unrelated, the path to my background
image is ../img/bg-bluebench.jpg because

my style sheet is in a folder that sits alongside
the /img/ folder. The paths to your own images
could vary.

[code block figure]

#container {

background: url(../img/bg-bluebench.jpg)
repeat-y;

}

294 Chapter 11

7 phaotobarcelona - Lix Lostro's photographs snd blog shout Barcelon - Mos

G This page is a bit of a disaster at the moment;
the background image makes the text all but
unreadable. We'll eventually cover the background
image up so that the text is once again legible.
Later on, we’ll peel back the cover to let some of
the background peek through.

To control whether the
background image is attached:

1. Type background-attachment:.

2. Then type fixed to stick the back-
ground image to the browser window
(meaning it will continue to show even
if the visitor scrolls the page) or scroll
to let it move when the visitor scrolls.
scroll is the default value, so you don’t
have to specify it if that’s the effect you
want, which is typical.

To specify the position of an
element’s background image:

Type background-position: x y, where x
and y can be expressed as a percentage
or as an absolute distance, such as 20px
147px (negative values are also allowed).
Or use the values left, center, or right
for x and top, center, or bottom for y. (See
the “More on Backgrounds” sidebar in
Chapter 10 for some examples.)

Layout with Styles 295

To change the background color:
1. Type background-color:.

2. Type transparent (to let the parent
element’s background show through)
or color, where color is a color name,
hex color, RGB color, RGBA color, HSL
color, or HSLA color (see “CSS colors”
in Chapter 7) (@ through @).

To change all the background
properties at once:

1. Type background:.

2. Specify any of the accepted back-
ground property values (as described
beginning with “To use a background
image” and continuing through “To
change the background color”) in any
order () and).

The default for background-color is
transparent. The default for background-
image is none. The default for back-
ground-repeat is repeat. The default for
background-attachmentis scroll. The
default for background-position is top
left (this is the same as 0 0).

When using the background shorthand
property, you needn’t specify all the proper-
ties. But be aware that if any non-specified
properties are set to their defaults, they may
override earlier style rules.

0 The background-colox property would work
for each of these but is longer than necessary, so

| went with the background shorthand again. The
background for the page div will make the text
legible. (I change this color to white a little later in
the chapter.) Next, you add a background to links
that are hovered over, in order to make it clear that
they really are links. You override that effect for the
linked site logo, giving it a transparent background
so the page background shows through during a
hover. Finally, you add a background color to the
feature column in the sidebar div. 'm using a
class so the style can be repurposed if another
sidebar or item with similar styling is added later.

#container {
background: url(../img/bg-bluebench.jpg)
repeat-y;

}

#page {
background: #fef6f8;
}

a:focus,

a:hover,

a:active {
background: #f3cfbé6;
}

.logo a:hover {
background: transparent;

}

.sidebar {
background: #f5f8fa;

}

296 Chapter 11

) photabarcelona - Liz Castra's photographs and blos about tarcelang - Mosiel P =(F.1]
Ol Ede Wew Megtory Qookmal Dol el
shottkarceins -Le Casio's photogriche s |

photobarcelona...

Swmare G
recent entries
Hospital Sant Pau

G The page div’s background completely covers
our background image from (). We'll remedy
that shortly (with padding). Notice how the links
that are not being hovered over share the same
background as page, while the hovered About
link has a higher-contrast background to draw
attention to it.

like me taking pictures. | confuse the locals by talk]

from my window

Mround the corner from our apartment there is @ mosaics studio,
lnd looked in wistfully thinking how cool it would be to make so
isplaved,

\This vear, | signed up, 185 g 22 hour workshop, spread into 2 hour
W ednesday marnings, and it's been great. Pve learned how to cut]
For sandstone, and refers to o matte tile) and how to fit them tog)
orojects,

o, the other day we make our annual pilarimaze to the Sagrada A
vatching what they're working on, and there in the middle of th
kold mosaic trignales, just like the ones Mve been cutting..

archive
ay 2011
fpr 2011
ar 2011
Feb 2011
Han 2011

about this photoblog

o The background color for the sidebar is
the lightest shade of blue | could manage—just
enough to set it off.

The background properties are not
inherited. You only need to explicitly set
default values like transparent or scroll
when you want to override another style rule.

If you use the background-position
property with a repeat, the position specifies
where the first image in the repeat starts. For
example, from the top right, 0 20px, and so
on.

You can use negative values with the
background-position property. For exam-
ple, background-position: -45px 80px
positions the image to the left—not from the
left—45 pixels (so you won’t see the first 45
horizontal pixels of the image) and 80 pixels
down from the top of the element.

To create a background for the entire
page, set the background property for the
body element.

If you specify both a color and a URL for
the background, the color will be used until
the image at the URL is loaded, will be seen
through any transparent portions of the back-
ground image, and displays in any area of the
element that the image doesn’t cover.

Choose your text and background colors
(and images) carefully to allow sufficient
contrast between the two. This is particularly
important for vision-impaired users.

Layout with Styles 297

Setting the Height or
Width for an Element

You can set a height and width on ele-
ments such as sectioning content, para-
graphs, list items, divs, images, video,
form elements, and more (@) and @).
Also, you can set phrasing content ele-
ments (which display as inline by default)
to display: block; or display: inline-
block; and then apply a width or height
to them too. (See “Displaying and Hiding
Elements” for more information about the
display property.)

To set the height or width
for an element:

1. Type width: w, where w is the width
of the element’s content area and can
be expressed either as a length (with
units like px and em) or as a percentage
of the parent element. Or use auto to
let the browser calculate the width (this
is the default).

2. Type height: h, where h is the height of
the element and can be expressed only
as a length (with units like px and em).
Or use auto to let the browser calculate
the height (this is the default).

@ Limiting the container div width to 90% of

the browser window gives it some air and helps

it not look so cramped (it’s the white space on

the side in 7). By reducing the page div to
97.9167% of the container div, you see part of the
background image on the side (see the comments
in the example code on the book site to learn how
| arrived at that percentage; also, feel free to use
more conventional percentages). And by setting
the main div to 71% of the page div, you leave
room for the sidebar, which you’ll move to the side
later. The input style sets the width of the search
form field. Lastly, the .photo dimensions control
the size of the paragraphs around the images

in the blog entries (it matches the width and height
of the images themselves).

#container {
background: url(../img/bg-bluebench.jpg)
repeat-y;
width: 90%;

}

#page {
background: #fef6f8;
width: 97.9167%;

}

#main {
width: 71%;

}

input[type="text"] {
width: 150px;

}

.photo {
height: 75px;
width: 100px;

}

298 Chapter 11

=i

recent entries "
Hospital Sant Pau

0 The container div, which encloses the shaded
page div, now occupies only 90% of the browser
window. Part of its background image shows on
the side because the page div width was reduced
as well. The main div width is 71% of the page div,
not the container div or browser window.

G The max-width property is ideal for setting the
outside limit of our fluid layout. In our case, you
don’t want it to get too wide, even if visitors have
huge displays. If you want to prevent an element
from getting too narrow, you could apply the
min-width property, though given the popularity
of Web browsing on mobile phones and other
smaller devices, choose wisely if you're inclined to
set a min-width.

#container {

background: url(../img/bg-bluebench.jpg)
repeat-y;

max-width: 950px;

width: 90%;

}

If you don’t explicitly set the width or
height, auto is used (see “Width, margins,
and auto”).

Remember that a percentage value is
relative to the width of the parent element—
not to the original width of the element itself.

The padding, borders, and margin
are not included in the value of width (see
“Width, margins, and auto”).

You can’t set a height or width on
elements that display as inline elements

(like phrasing content) unless you set them

to display: inline-block or display:
block. See “Displaying and Hiding Elements”
for more information about the display
property.

Widths and heights are not inherited.

There are also min-width, min-height,
max-width, and max-height properties é
(In the event that you want to support Internet
Explorer 6 for your site, be aware that it
doesn’t support these properties.)

Layout with Styles 299

Width, margins, and auto

For most elements that display as block-
level by default, the auto value for width is
calculated from the width of the containing
block minus the element’s padding, bor-
ders, and margins. The containing block

is the width that the element gets from its
parent.

Elements like images have an auto width
equal to their intrinsic value; that is, the
actual dimensions of the external file
(like the example page’s images, which
are 100 x 75). Floated elements have

an auto width of 0. Non-floated inline
elements ignore the width property
altogether (meaning you can’t set a width
on elements like em and cite unless you
set them to display: inline-block or
display: block). See “Making Elements
Float” to learn more about floats, and
“Displaying and Hiding Elements” for more
information about display.

0 In this example, I've set the width of the parent
div to 300 pixels. This will be our containing block.
Then, both paragraphs have 10-pixel margins,
5-pixel padding, and 5-pixel borders on all sides.
The first paragraph has the width set automatically,
since auto is the default width value unless you
specify otherwise. The second paragraph (which
has class="example" in the HTML) is set at 200px.

div {
background: yellow;
width: 300px;

}

P,

.example {

background: white;
border: 6px solid blue;
margin: 10px;

padding: 5px;

}

.example { /* the second paragraph */
background: white;

border-color: purple;

width: 200px;

}

Why min-height Is Often Preferable to height

Unless you're certain an element’s content won’t get taller, it’s almost always best to avoid giving
it a height in your style sheet. In most cases, you’ll let the content and browser dictate the height
automatically. This lets content flow as needed on the range of browsers and devices.

If you do set a height and the content grows, it could break out of the element’s box, which might
not be what you’d expect. Standards-compliant browsers do not expand the height automatically
in this circumstance; they take your word for it when you specify a height, and they stick to it. (IE6
doesn’t follow the standard, so it does expand the height.)

However, if you always want the element to be at least a certain height, set a min-height. If the
content later grows, the element’s height will grow automatically as desired. That is the difference
between height and min-height, as well as width and min-width.

And in case you’re wondering, there are a variety of reasons content might grow. Your content
might come from a database or a feed or be user-generated. Also, your visitor may increase the
font size in his or her browser, overriding the style you specified.

300 Chapter 1

Automatic width
is 258 pixels

Margin of
10 pixels

‘ Width - Mozilla Firefox ‘ o] 4 |

File Edit ‘Wew History |Bookmarks Tools Help

Margin of
10 pixels

11 width |T| -

Thiz paragraph has at] automatic width,
10p= margins, Spx pedding, and fpx blue
‘borders. Since the containing blockis
200px wide, this paragraph has a width of
300-10-10-6-6-5-5 (that 13, 300-42), or
258 pixels, as determined by the browser

automatically Don't forget you have to
subtract the margin, border, and padding
from both the left and right sides!

This paragraph has
class="example" app]ied to i,
so its width 15 set to 200 pixels,
with the same 10px margns, Spx
borders (though red), and Spx
padding as the first paragraph.
So, the total amount of horizontal
space it ocoupies is
200+10+10+6+6+5+5 (that is,
2004423, or 242 pixels. Because
it has an explicit width set, the
paragraph 1sn't stretched by the
browser automatically to fill the

remaining space of the containing | 58 pixels

block. of space
«<— width: 200px — >l «<——>

< >
« >

width: 300px
(containing block)

G If the width is auto, as in the top paragraph, its
value is derived from the width of the containing
block (yellow) minus its own margins, padding,
and border. If the width is set manually (as in the
bottom paragraph), the right margin is usually
adjusted to pick up the slack.

If you manually set the width,
margin-left, and margin-right values,
but together with the border and padding
they don’t equal the size of the containing
block, something’s got to give. And indeed,
the browser will override you and set
margin-right to auto (@ and @).

If you manually set the width but set one
of the margins to auto, then that mar-
gin will stretch or shrink to make up the
difference.

However, if you manually set the width
but leave both margins set to auto,

both margins will be set to the same
maximum value (resulting in your ele-
ment being centered; for example,
#container { margin: 20px auto; }
centers the page). That’s precisely what
I've done for the example page, as shown
in the next section, “Setting the Margins
around an Element.”

Layout with Styles 301

Setting the Margins
around an Element

The margin is the amount of transpar-

ent space between one element and the

next () and @). See “The Box Model” for
how it relates to an element’s border and
padding.

To set an element’s margins:

Type maxgin: x, where x is the amount of
desired space to be added, expressed as
a length, a percentage of the width of the
parent element, or auto.

If you use one value for margin, that
value is applied to all four sides equally. If you
use two values, the first value applies to the
top and bottom and the second value applies
to the right and left). If you use three values,
the first applies to the top, the second to the
right and left, and the third to the bottom.

If you use four values, they are applied to

the top, right, bottom, and left, in clockwise
order G

You can also add one of the follow-
ing suffixes to the maxgin property to apply
a margin to a single side: -top, -bottom,
-left, or -right (9. There shouldn’t be
any space after margin (for example,
margin-top: 10px).

o One of the principal margin adjustments is to
the container div. When you set two values, the
first is applied to the top and bottom margins, the
second is applied to the left and right margins.
You’ll set the top and bottom margins to 20px

to give our design a little space. With an explicit
width already defined on container, the left and
right margins of auto cause the page to center
horizontally in the browser

#container {
background: url(../img/bg-bluebench.jpg)
repeat-y;
margin: 20px auto;
max-width: 950px;
width: 90%;

=10 X

B g Mgy podkeads Bk b

Photsbarcskna - Ls Cautes's phesograpbe . | 4

photobarcelona... ... v o e

recent entries .
Hospital Sant Pau

=

L

0 The auto margin setting centers the layout

in the window by dividing up the leftover 10% of
the browser window width that is not used by the
container div between the right and left margins.
(Don’t worry about the bullets sticking out the left
side of the page; we’ll take care of those later in
the chapter.)

302 Chapter

G The sidebar div (with id="related") will have
a left margin of 72% so it’s farther from the left
than the main content div, which has a width of
71%. The sidebar will continue to appear below
the main content div until you float the latter a
little later in the chapter 0 I've added margins
to several other elements too, like below the
masthead, above the footer, and to the right and
bottom of the partial blog entries to give them
some breathing room 3.

h1 {
font-size: 1.5em; /* 24px/16px */
margin-bottom: .75em;
text-transform: lowercase;

}

aside h2 {
font-size: .9375em; /* 15px/16px */
margin-bottom: 3px;
text-transform: lowercase;

}

#masthead {
margin-bottom: 30px;

}
#footer {

margin-top: 10px;
}

.entry { /* blog snippet */
margin: O .5em 2em O;
}

.continued {
font-style: italic;
margin-top: -5px;

}

#related { /* the sidebar */
margin-left: 72%;
}

The margin property’s auto value
depends on the value of the width prop-
erty (see “Setting the Height or Width for an
Element).

If one element is placed above another,
only the greater of the two touching margins—
that is, the touching bottom and top margins
of the elements—is used. The other one is
said to collapse. Left and right margins don’t
collapse.

Margins are not inherited.

| set margins to a few more elements
than shown in either Q or G You can see
the complete code at www.bruceontheloose
.com/htmlicss/examples/chapter-11/finished-
page.html.

Market Day

June 2, 2011)

o rry winy b
with friends so | made th

them in Catalsn, but., "

A

0 The sidebar is now 72% from the left edge.

photobarcelona... . s i s i

home
= about
or s

« arch

Search: Ii Lt |

recent entries

June 2%, 201

Hospital Sant Pau l

itacture. Mthough the buildin

G Now there’s more space between several of
the elements.

Layout with Styles 303

www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html
www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html
www.bruceontheloose.com/htmlcss/examples/chapter-11/finished-page.html

Adding Padding
around an Element

Padding is just what it sounds like: extra
space around the contents of an element
but inside the border. You might recall
my analogy from before—padding is like
the matting between a photo (the con-
tent) and a picture frame (the border).
You can change the padding’s thickness
(@. O, and @) but not its color or tex-
ture, but an element’s background color
and image do show in the padding area

(0, 0.0, and Q).

To add padding around an element:

Type padding: x, where x is the amount
of desired space to be added, expressed
in units (typically in ems or pixels) or as a
percentage of the width of the parent ele-
ment (20%).

o Similar to setting margins, when you set four
values for padding, they are assigned to the top,
right, bottom, and left, in that clockwise order. So
here, there will be padding only on the top and
right 0

#container {
background: url(../img/bg-bluebench.jpg)
repeat-y;
margin: 20px auto;
max-width: 950px;
width: 90%;
padding: 30px 10px O O;

L B\ y By U
photobarcelona...

home

recent entries

0 When you add padding to the container div,
space is created between its margin (because

its border is O by default) and its contents (in

this case, the page div). As a result, more of
container’s background image is revealed.

G Now you’ll add padding to the contents of the
page div—to the top, right, and bottom but not to
the left.

#page {
background: #fef6f8;
max-width: 940px;
padding: 10px 10px 10px O;
width: 97.9167%; /* 940px/960px */

L B\ VB -

photobarcelona... . s cstvmmo i I
by
recent entries n

0 With the padding added to the page div, notice
the extra 10 pixels between “photobarcelona” and
the top edge.

304 Chapter 11

G I've replaced the page’s temporary background
color with white (#fff) 3 | also added a little
padding to all four sides of the sidebar so the
content doesn’t run to the edges, as well as
padding to the left of the ordered list so the bullets
indented (&). (See Chapter 15 for more about lists.)

#page {
background: #fff;
padding: 10px 10px 10px O;
max-width: 940px;
width: 97.9167%; /* 940px/960px */

}

.sidebar {
background: #f5f8fa;
padding: 10px;

}

.archive ol {
/* changes list items from numbers to
bullets */
list-style: disc;
/* indents bullets */
padding-left: 18px;

As with the margin property, if you use
one value, the specified padding is applied to
all four sides equally CEN you use two values,
the first value applies to the top and bottom
and the second value applies to the right and
left. If you use three values, the first applies to
the top, the second to the right and left, and
the third to the bottom. If you use four values,
they are applied to the top, right, bottom, and
left, in clockwise order (0 and G).

You can also add one of the following
suffixes to the padding property to apply pad-
ding to a single side: -top, -bottom, -left,
or -right. There should be no space between
the word padding and the suffix (for example,
padding-right: 1em).

Padding is not inherited.

- AV A A

photobarcelona... ... o i I
by
recent entries h

O When the page background is set to white,

it's clear why you didn’t add padding to the left

as well. | have made a number of other padding
adjustments that you can study in the code files on
the book’s site.

from my window

Around the corner from our apartment
there is ¢ mosaics studio, Last year and
the vear before, [waliked by and looked
in wistfully thinking how cool it would
be to make some of the incredible
mosaies they have displayed,

This yeor, [signed up. I¥s a 22 hour
wonkshop, spread into 2 hour chunks.
Mye been going Monday and Wednesday
mornings, and it's been great, Pve
learned how to cut ceramic tiles and
also “gres” (their word for sendstone,
and refers to @ matte tile) and how to
fit them together, Pve got a bunch of
ideas for more projects,

Su, the other doy we make our annval
pilgrimaege to the Segrada Familia, and
i favorite part is abuays wotching
what they’re working on, and there in
the middle of the work areg i3 @ small
pile of green and gold mosaic triangles,
Just like the ones Pwe been cutting..

More from the archive

continyed
archive . X
o fhay 2011 O The sidebar’s
o dpramt background color
e b shows through the
* Jan 2011 10px of padding

added to all four
sides in G

Layout with Styles 305

Making Elements Float

You can make elements float in a sea

of text (or other elements). You can use
this technique to make text wrap around
images (@) and @) or figures to create
multi-column layouts and more.

To wrap text around elements:
1. Type float:.

2. Type left if you want the element on
the left, and the rest of the content to
flow to its right (€ through @).

Or type right if you want the element
on the right, and the rest of the content
to flow to its left.

recent entries

Hospital Sant Pau
S The S

Q The intro text doesn’t wrap anymore. Next,
you’ll float the main div G so the sidebar appears
alongside it o

0 When you float an element to a side, the
content that would normally display after it flows
around it instead. Here, I've floated the image
containers (a p with class="photo") to the left in
order to get the blog entry introductory text next
to them. (You can also apply float directly to img
elements.) As you can see in 0 the text wraps
around an image container when it’s taller than it.
This effect is desirable in many cases, but for this
page | want the text to continue straight down,
regardless of its length. | achieve this by adding a
left margin to the container around the text (9.

.photo {
float: left;
height: 75px;
width: 100px;

recent entries

Hospital Sant Pau

Tunva 26, 2001

Farrilia

i The Saint Paul b
nelghl
Athaugh

ate

om the
e It slaving hit

0 Since the .photo containers are floated left,
the text scoots up alongside it and wraps around it
when it’s taller.

0 By giving the container around the text a left
margin of 110px, its content always displays that
far from the left edge, even when it’s taller than
the image container. As a result, it no longer wraps
around it (2. Unrelated to this task, | included the
-5px top margin so the text would align with the
top of the image to its left.

/* This class is on the div that contains
both the introductory text and the
"continue" link that follows it. */

.intro {

margin: -5px 0 0 110px;

}

306 Chapter 11

G Now, you’ll use the same approach to float the
main content to the left so the sidebar will appear
next to it. (Earlier you pushed the sidebar off to
the right of—but still below—the main content by
applying a left margin to it.)

#main {
float: left;
width: 71%;

}

/* We applied this margin to the sidebar
earlier. */
#related {
margin-left: 72%;
}

i b e B b o

- AV VI O o
photobarcelona... ... N

o Here, the main div is floated left, so the
sidebar simply flows along the right side of the
floated left main div. In fact, the footer does as
well @ because it follows the sidebar in the
HTML immediately. (You'll get the footer back
down where it belongs in the next section.) Note
that it wasn’t strictly necessary to give the sidebar
(#related) a big left margin to get the float effect,
just as it wasn’t when you floated the blog text
around the image containers (0 and 0). But in
the same way that it prevented wrapping in

and 0 the left margin prevents the sidebar text
from wrapping underneath the main div if the
sidebar ever gets taller than the main div. Also,
the sidebar’s background color would stretch
across the entire main div if the sidebar lacked a
left margin.

Or type none if you don’t want the ele-
ment to float at all. (none is the default
value, so you’d only set it explicitly if
you were overriding another rule that
made an element float that you didn’t
want to in a particular circumstance.)

3. Use the width property (see “Setting
the Height and Width for an Element”) to
explicitly set the width of the element.

Remember, the direction you choose
applies to the element you’re floating, not to
the elements that flow around it. When you
float: left, the rest of the page flows to the
right, and vice versa.

Some elements (for example, phrasing
content) without an explicit width may not
float properly.

The float property is not inherited.

@ Since the main div is floated left, all of the
other elements, including the footer, flow around
it unless you say otherwise. And you will say
otherwise in the next section.

Layout with Styles 307

Controlling Where
Elements Float

You can control which elements an ele-
ment can float next to and which it cannot.
To keep an element from floating next to
something you don’t want it to, use the
clear property @.

To control where elements float:

1. Type clear: (@) and ©).

2. Type left to keep elements from float-
ing to the left of the element you're
styling @.

Or type right to keep elements from
floating to the right of the element
you’re styling.

Or type both to keep elements from
floating to either side of the element
you’re styling.

Or type none to let elements flow to

either side of the element you’re styling.

o On the previous page, you saw that the footer
flowed around the floated main div. Here, you
apply clear: both; to prevent that 0 You could
conceivably use clear: left; instead since the
only floated element you have to worry about

is floating on the left. But it doesn’t hurt to clear
both sides, and it may come in handy if the design
grows more complex.

#footer {
clear: both;
margin-top: 10px;

0 The clear property indicates that the element
in question (the footer in this case) must not flow
around the floated element, but must instead be
displayed after the floated element.

G In styling the masthead, the logo (which
includes the slogan) is floated left. The div
surrounding the main navigation and search box is
floated right. And within that div, each navigation
list item is floated left so they appear next to each
other instead of stacking vertically.

.logo {
float: left;
font-size: 2.5em; /* 40px/16px */
margin: 0;

}

/* This div surrounds both the main
navigation and the search form. */
#masthead div {
float: right;

}

/¥ i Site Nav i ¥/

.nav 1i {
float: left;
font-size: .75em; /* 12px/16px */
padding: 0 25px 0 3px;

}

308 Chapter 11

- AV A RSk [J 4
photobarcelona... R e e Pl

recent entries

Hopital 5

e

0 Most of the masthead’s layout is fine, but

the content below the masthead, especially the
sidebar, has moved up because of the floats.
That’s because the height of the masthead’s
containing element (the header) has collapsed
since it didn’t account for the height of the floated
elements within it.

Fau

G To clear the floats in the masthead so the
main content and sidebar divs don’t flow into it,
you could add a div around both the main and
sidebar divs and apply clear: both; to it. But
you want to keep the HTML as lean as possible,
so that’s not ideal. Another way is to use a very
popular solution known as clearfix. All it requires
is to apply class="clearfix" to the masthead.
Assuming the .clearfix CSSis already in the
style sheet, the problem is solved o See the
sidebar on the next page for more details.

<div id="container">
<div id="page">
<header id="masthead" role="banner"
class="clearfix">

</header>

<div id="main" role="main">

</div>
LB\ A RCSET | J 4
photobarcelona... B vy~ [

o The clearfix method magically clears the
masthead’s floats so the content that follows
appears below it.

You add the clear property to the
element whose sides you want to be clear
of floating objects () through). So if you
want an element not to be displayed until
the right side is clear of floating elements
(and anything flowing to the side of it), add
clear: right; to it (and not to the floating
elements).

A span surrounds the page’s slogan.
Though not shown, the style sheet contains
arule reading .1logo span { display:
block; }. This rule makes the span display
on its own line, just like a paragraph or other
elements that display as blocks by default.
See “Displaying and Hiding Elements” for
more information.

Layout with Styles 309

Other Methods for Clearing floats

There are a couple of other ways you could solve clearing the floats in the masthead so the main
and sidebar content don’t flow into it

The overflow Method
The first and most simple way is to add this to your style sheet:
#masthead {

overflow: hidden;

}

(The overflow property is covered later in the chapter.) Using overflow: auto; also works
in some cases, but you might see a scroll bar, which is obviously undesirable. And in some
cases, overflow: hidden; will cut off content, so keep an eye out for that. In my own work,

| use overflow to solve float issues like the one in the masthead when it’s able to do the job.
When itisn’t, | use clearfix (9. Generally, clearfix is the more consistent method, which is
why | showed you how to do it in the example even though it’s my last resort.

The clearfix Method

The CSS for .clearfix has gone through various permutations over the years as members of the
Web community have refined it. The version shown below was taken from the excellent HTML5
Boilerplate (www.htmlI5boilerplate.com), an effort started by Paul Irish and subsequently contrib-
uted to by a variety of community developers. | encourage you to check it out.

Nicolas Gallagher, who is now a core member of the project, contributed the following clearfix
code. Simply copy and paste it into your style sheet and apply class="clearfix" to the element
containing the floats

.clearfix:before, .clearfix:after { content: ""; display: table; }
.clearfix:after { clear: both; }
.clearfix { zoom: 1; }

| won’t explain what all that means since it’s a little involved. You can read more about it at http://
nicolasgallagher.com/micro-clearfix-hack/ (be warned that the discussion is pretty technical).

Summary

There’s a subtle difference between using the clear property and using either the overflow or
clearfix methods. With clear, you apply it to the element that you don’t want flow around a
floated element. The other two are methods that you apply to a container of the floated element or
elements.

310 Chapter N1

www.html5boilerplate.com
http://nicolasgallagher.com/micro-clearfix-hack/
http://nicolasgallagher.com/micro-clearfix-hack/

o You add a few more design touches by
implementing these borders. In the case of the
dotted border on the bottom of the masthead, it
also helps visitors distinguish the masthead from
the rest of the page at a glance.

#masthead {
border-bottom: 2px dotted #1d3d76;
margin-bottom: 30px;
padding-bottom: 20px;

.entry {
border-right: 2px dashed #b74e07;
margin: O .5em 2em O;

}

#footer {
border-top: 2px dotted #b74e07;
clear: both;
margin-top: 10px;

}

L S\ Ve i | F 4

photobarcelona... o ey e]

recent entries

Hospital Sant Pau

0 Notice that since a right border is applied to
each entry section element and not the main
div, it stops and starts for each entry. Unlike the
masthead and footer borders, these are dashed.

G The footer has a top border that is the same
style (dotted) as the one below the masthead but
is a different color. And similar to that one, it helps
to separate the footer visually from other content.

Setting the Border

You can create a border around or on
individual sides of an element and then
set its thickness, style, and color 0.If
you've specified any padding (see “Adding
Padding around an Element”), the border
encloses both the padding and the con-
tents of the element.

To define the border style:

Type boxder-style: type, where type
is none, dotted, dashed, solid, double,
groove, ridge, inset, or outset.

To set the width of the border:

Type border-width: n, where n is the
desired width, including abbreviated units
(for example, 4px).

To set the color of the border:

Type border-color: color, where color
is a color name, hex value, or RGB, HSL,
RGBA, or HSLA color (see “CSS colors” in
Chapter 7).

Layout with Styles 311

To set one or more border © In this example, | set the padding and default

properties at once with a shortcut: border for each paragraph. Then for the first
paragraph, | set the border width for all four sides,
1. Type border. and then the style for each side. For the four
. . remaining paragraphs, it was easier to repeat the

2. If desired, type -top, -right, -bottom, 10px than to separate the style and color into two

or -left to limit the effect to a single separate properties.

side.

pi{

3. If desired, type -property, where border: 10px solid red;

property is style, width, or color, to padding: 15px;

limit the effect to a single property.

4. Type : (a colon). p.ddd {
X border-width: 4px;
5. Type the appropriate values (as border-style: dotted dashed double
described in the three techniques on solid;
the previous page). If you skipped }

step 3, you can specify any or all of

the three types of border properties p.inset {

border: 10px inset blue;

(for example, border:1px solid or }

border-right: 2px dashed green;).

If you specified a property type p.outset {

in step 3, use an accepted value) border: 10px outset green;

for just that property (for example,

border-right-style: dotted;). p.groove {

border: 10px groove purple;

Borders are not inherited. }
The individual border properties p.ridﬁe {d) ”)
(border-width, border-style, and border-) order: 10px ridge orange;

color) can have from one to four values.

If you use one value, it is applied to all four
sides. If you use two, the first is used for the
top and bottom, and the second for the right
and left. If you use three, the first is used for
the top, the second for the right and left, and
the third for the bottom. And if you use four,
they are applied to the top, right, bottom, and
left, in clockwise order.

312 Chapter 11

) Border Styles - Mozilla Firefox | -0 x|
File Edit %iew History EBookmarks Tools Help
| | Border Skyles | + | >
Cesea NN
A Spx border from top, right, bottorn, left: 1

dotted, dashed, double. I

Here's one with a 10px ridge border.

And here's one with a 10px groove border. |
| |
Here's a paragraph with a 10px inset border,

And here's one with a 10px cutset border.

9 Each browser’s treatment of the border styles
isn’t exactly the same, but this view of Firefox
gives you a sense of the differences between the
style types.

You must define at least the style for a
border to display. If there’s no style, there will
be no border. The default is hone.

If you use a shortcut, like border or
border-left (and so on), the properties you
don’t give values for are set to their defaults.
So border: 1px black; means border: 1px
black nonej;, which means you won’t get a
border (even if you specified a style earlier
with border-style).

The default color is the value of the
element’s colox property (see “Setting the
Color” in Chapter 10).

IE (up to and including version 7) cannot
display very dark two-tone border styles like
groove, ridge, outset, and inset. They
come out solid.

The border property can be used for
tables and their cells.

CSS3 introduces the border-image
property. Browser support is good outside of
Internet Explorer (see http://caniuse.com/
#search=border-image). You can learn about
border-image at www.sitepoint.com/
css3-border-image/.

Layout with Styles 313

http://caniuse.com/#search=border-image
http://caniuse.com/#search=border-image
www.sitepoint.com/css3-border-image/
www.sitepoint.com/css3-border-image/

Offsetting Elements
in the Natural Flow

Each element has a natural location in a
page’s flow @). Moving the element with
respect to this original location is called rel-
ative positioning (@ and @). The surround-
ing elements are not affected at all

To offset elements within
the natural flow:

1. Type position: relative; (don’t forget
the semicolon; the space is optional).

2. Type top, right, bottom, or 1left.

Then type :v, where v is the desired
distance that you want to offset the
element from its natural location,
expressed either as an absolute or rela-
tive value (10px or 2em, for example) or
as a percentage.

3. If desired, repeat step 2 for additional
directions, separating each property/
value pair with a semicolon as usual.

Hospital Sant Pau

int Paul

¢t Lluis Domenec | Montaner, the hospital it

o Although the date is aligned to the right, it is on
a separate line from the heading and thus appears
below it and too close to the entry text.

0 Remember to both specify the relative
positioning and also give the offset. It can be
either a positive or negative value. Using ems will
keep the offset in proportion with the size of the
text. Because 1em is equal to the element’s font
size, in this example the declaration moves the
date up by that much (because of -1em)

.entry .date {
line-height: 1;
margin: 0 lem 0 0;
padding: 0;
position: relative;
top: -1em;

314 Chapter 11

Hospital Sant Pau

O/ The Saint Paul

o By applying a negative offset to the date, you
push it up into the preceding block’s space. In this
case, that results in the date being aligned with
the section title. The succeeding elements are not
affected at all.

The “relative” in relative positioning
refers to the element’s original position, not
the surrounding elements. You can’t move
an element with respect to other elements.
Instead, you move it with respect to where it
used to be. Yes, this is important!

The other elements are not affected by
the offsets—they flow with respect to the origi-
nal containing box of the element. Depending
on your top, right, bottom, or left values,
your relatively positioned content may overlap
other content.

Use the z-index property to specify
the stacking order of elements that overlap
each other when positioned with relative,
absolute, or fixed. See “Positioning Ele-
ments in 3D” for details.

Offsets don’t work unless you’re also
using the position property.

Set an element to position: static
to override a position: relative setting.
static is the default value for elements,
which is why they appear in the normal docu-
ment flow. See an example in “Positioning
Elements in 3D.”

Positioning is not inherited.

Layout with Styles 315

Positioning Elements
Absolutely

As noted, the elements in your Web page
generally flow in the order in which they
appear in the HTML source code @). That
is, if the img element comes before the p,
the image appears before the paragraph.
You can take elements out of the normal
flow—and position them absolutely—by
specifying their precise position with
respect to the body O or to the nearest
positioned ancestor element 0.

To position elements absolutely:

1. Type position: absolute; (don’t forget
the semicolon; the space is optional).

2. If desired, type top, right, bottom, or
left.

Then type : v, where v is expressed
as the desired distance that you want
to offset the element from its ances-
tor (20px or 2em, for example) or as a
percentage of the ancestor. (See the
second tip for a related note.)

3. If desired, repeat step 2 for additional
directions, separating each property/
value pair with a semicolon as usual.

4. If desired, add position: relative
to the ancestor element to which you
want your absolutely positioned ele-
ment to be offset (). If you skip this
step), the element will be offset with
respect to the body

photobarcelona...

- AV Ve | §]

Q Our search form is still sitting below the
main navigation because it's part of the normal
document flow. You want to shift it to the upper-
right corner of the masthead that contains it.

0 By positioning the form absolutely, I've taken

it completely out of the document flow. It doesn’t
know other content exists, and vice versa. This
code alone doesn’t achieve our desired results
because, unless you specify otherwise, an element
with position: absolute is positioned relative to
the body element, as you can see in 0

#masthead form {
position: absolute;
top: 7px;
right: o;

L __F\
photobarcelona...

]
recent entries e
o3Pl Sant Pau i e

A A S|

G The search form displays 7 pixels from the top of
the body and O from the right, relative to the body.

0 | set the form’s div container to position:
relative; so the form will be positioned absolutely
relative to the div, not to the body element. This
gets the search box where you want it, but it
introduces another problem G

/* This div srrounds both the search form and
the main navigation. */
#masthead div {
float: right;
position: relative;

}

#masthead form {
position: absolute;
top: 7px;
right: o;

316 Chapter 11

photobarcelona... e]
>

recent entries

G The search form now displays 7 pixels from
the top edge of its container div and O from the
right of it. (The extra white space above and

to the right of it is the 10px padding you set

on #page.) However, it’s sitting on top of the
navigation. Not good. As mentioned, when an
element is positioned absolutely it’s taken out of
document flow, so the navigation displays in the
same place it would if the search form didn’t exist
at all. Let’s resolve that @.

0 A simple margin on the top of the navigation
pushes it down below the search form and lines it
up with the slogan in the logo 0

/* This div srrounds both the search form and
the main navigation. */
#tmasthead div {
float: right;
position: relative;

}

#masthead form {
position: absolute;

top: 7px;

right: o;
}
.nav {

margin-top: 45px;
}

. AW
photobarcelona...

;A

@ The search form and navigation now display
as you’'d like. Better yet, their layout relative to
one another remains intact when the page is
narrower). This is good news for visitors on
mobile phones and other devices with narrower
screens.

Because absolutely positioned elements
are taken out of the flow of the document,
they can overlap each other and other ele-
ments . (This is not always bad.)

If you don’t specify an offset for an abso-
lutely positioned item, the item appears in its
natural position but does not affect the flow of
subsequent items.

There is also a fixed positioning type.
When a visitor scrolls in the browser window,
the contents of the page usually move up or
down. When you set an element to position:
fixed;, it is affixed to the browser window so
that it doesn’t move when the visitor scrolls up
or down. The rest of the page does scroll as
usual. IE6 doesn’t support fixed.

Use the z-index property to specify
the stacking order of elements that overlap
each other when positioned with relative,
absolute, or fixed. See “Positioning Ele-
ments in 3D” for details.

Set an element to position: static
to override a position: absolute; setting.
static is the default value for elements,
which is why they appear in the normal docu-
ment flow. See an example in “Positioning
Elements in 3D.”

Positioning is not inherited.

) plutubiarcelona - Liz Castro’s photographs amd bleg about Barcelon =10l x|

B Gt Yew Hgory Godmals Dok fde
photobarcelons - Liz Castra's photooraphs s, |

- AV A A
photobarcelona...

wrirg baveelonas culburel trevswres on film
Search: e il e aa

home « about « resources = archives

0 The search form and navigation move together
as a unit because they are both contained in the
same div. When the browser is narrow, they slide
underneath the floated logo. The experience
remains usable because the layout accounts for
those conditions.

Layout with Styles 317

Positioning
Elements in 3D

Once you start using relative, absolute, or
fixed positioning, it’s quite possible that
you’ll find that your elements have over-
lapped, just as they did with the search
form and main navigation. You can choose
which element should display on top (@)
through @).

To position elements in 3D:

Type z-index: n, where n is a number that
indicates the element’s level in the stack of
positioned objects.

The z-index property only works on
positioned elements (that is, absolute,
relative, or fixed). The example (i) shows
absolute elements only, but you can mix and
match and the z-index settings will apply col-
lectively, not separately, within the absolute,
relative, and fixed elements.

The higher the value of the z-index
property, the higher up the element will be in
the stack (.Y and).

o Here is quick sample HTML code followed by
its style sheet ('}, which renders as

<body>

<div class="box1">
<p>This is box 1</p>

</div>

<div class="box2">
<p>This is box 2¢</p>
</div>

<div class="box3">
<p>This is box 3</p>
</div>

<div class="box4">
<p>This is box 4</p>

</div>

</body>

</html>

318 Chapter 11

0 This style sheet demonstrates that the
absolutely (or relatively or fixed) positioned
element with the highest z-index number always
shows on top (&), regardless of where it appears
in the order of the HTML 0 This also shows how
position: static; can be handy. The first rule
sets all four divs to position: absolute;, but then
| override it on .box3, setting it back to the default
value of static. This returns .box3 to the normal
document flow, so even though it has the highest
z-index number, that has no effect and .box3 will
always be on the bottom.

div {
background: #ccc;
border: 1px solid #666;
height: 125px;
position: absolute;
width: 200px;

}

.box1 {
background: pink;
left: 110px;
top: 50px;
z-index: 120;

}

.box2 {
background: yellow;
left: o;
top: 130px;
z-index: 530;

.box3 {
height: auto;
min-height: 125px;
position: static;

/* Has no effect on stacking order
because the element is not
positioned as absolute, relative,
or fixed. */

z-index: 1000;

}

.box4 {
background: orange;
left: 285px;
top: 65px;
z-index: 3;

If you have nested items within an ele-
ment that has a certain z-index, all those
nested items are first ordered according to
their own individual z-indexes and then, as a
group, ordered in the larger context.

IE7 and earlier don’t implement z-index
as expected. Each positioned element starts
its own stacking context rather than respect-
ing the stacking order of all positioned ele-
ments within the whole page as it should. This
issue and a fix are demonstrated at http://
brenelz.com/blog/squish-the-internet-explorer-
z-index-bug/. (Ignore the fact that the solution
is shown in inline styles. Place your CSS in an
external style sheet as you normally would.)

The z-index property is not inherited.

O csen vostoreeior R

Fle Edt Yew Hgtory Bookmarks Tools Help
index |+

[This is box 3
|L|'hisis box 1

‘ iz hoxd

|
Ttus 15 box 2

]

G The positioned boxes are stacked from highest
z-index down to lowest. The third box is below all
of them because it’s in the normal document flow.

Layout with Styles 319

http://brenelz.com/blog/squish-the-internet-explorer-z-index-bug/
http://brenelz.com/blog/squish-the-internet-explorer-z-index-bug/
http://brenelz.com/blog/squish-the-internet-explorer-z-index-bug/

Determining How
to Treat Overflow

Elements are not always contained in their
boxes. Sometimes the box is simply not
big enough. For example, an image that is
wider than its container will spill out of it.
Or perhaps you’ve positioned the content
outside of the box, either with negative
margins or absolute positioning. Regard-
less of the cause, you can control the

area outside of the element’s box with the
overflow property.

To determine how the browser
should treat overflow:

1. Type overflow:.

2. Type visible to expand the element
box so that its contents fit. This is the
default option.

Or type hidden to hide any contents
that don't fit in the element box.

Or type scroll to always add scroll
bars to the element so that the visi-
tor can access the overflow if they so
desire.

Or type auto to have scroll bars appear
only when necessary.

about this photoblog

Thiz photoblog is the product of a lowe of computers,
photography, and Barcelona, |f you're interested in any of
my photos, pleaze contact me, The photographs on these
pages are licensed under the Creative Commons
Attribution-MonCommercial-MoDerivs License, To wiew a
copy of this license, visit http:/fcreativecommons.orgs
licenses /by-nc-nd 2,5/ or, (b) send a letter to Creative
Commons, 545 Howard Street, 5th Floor, San Francisco,

Califarnia, 34108, US4,
i
gy * .
B e S S

wmafm= bmas

o The images at the bottom of the footer wrap

to multiple lines when the window is narrow. This
is usually a good thing, because you want your
content to adapt to different conditions. But just to
show you how the overflow property works, you'll
change this behavior temporarily (€ and (9).

0 In order to display a single line of images
regardless of the browser width, you set the height
of the ul element that contains the list of images
to the height of the largest images and then set
overflow to hidden.

.thumbnails {
height: 33px;
overflow: hidden;

320 Chapter

about this photoblog

Thiz photoblog i= the product of a lowe of computers,
photography, and Barcelona, |f you're interested in any of
my photos, pleaze contact me, The photographs on these
pages are licensed under the Creative Commons
Attribution-MonCommercial-MoDerivs License, To wiew a
copy of this license, visit http://creativecommons.orgs
licenses /by-nc-nd 2,575 or, (b) send a letter to Creative
Commars, 543 Howard Street, 5th Floor, San Francizco,
Califarnia, 94108, LSA,

duie o=l

G Now the extra images are hidden. If you were
to widen the browser, more images would show on
the same line. Next, I'll show another approach s
though it’s unsightly in this case G

Q If you want to restrict the viewable area of
images to one line but allow visitors to access
them all via a scroll bar when they spill to
multiple lines, use overflow: auto; in conjunction
with the same height as before.

.thumbnails {
height: 33px;
overflow: auto;

about this photoblog

This photoblog is the product of a lowe of computers,
photography, and Barcelona, If you're interested in any of
my photos, please contact me, The photographs on these
pages are licenzed under the Creative Commons
Attribution-rMonCommercial-MaDerivs License, To wiew a
copy of this license, wizsit http: ffcreativecommons. orgyd
licenses/by-nc-ndf2,. 6/, an, (b) send aletter to Creative
commans, 543 Howard Street, Bth Floor, San Francisco,
California, 94108, US4,

S ol 2 R

G I've scrolled down near the last line of
images. Obviously, this isn’t attractive in this
context. But this technique can be handy in some
circumstances, albeit with a taller height set on
the container.

In practice, | don’t advocate hiding the
images like in the examples, because it’s
preferable to allow users to view them regard-
less of the width of their browser (remember
that mobile phones and tablets have narrower
screens). Because the example was just for
demonstration purposes, I’'ve omitted the
height and overflow declarations from the
completed version of the page on the book
site. Also, | wouldn’t make a habit of including
this many thumbnails in all my pages, because
it’s a lot of images to load. Again, | did so here
in order to demonstrate the concepts.

The overflow property is also handy
for stopping floats. See “Other Methods for
Clearing floats.”

Note that IE6 will incorrectly extend

the parent to be as big as the child. The only
exception is if you set the overflow property
to any value except visible (the default), in
which case the parent will shrink down to its
normal size and let the overflow property do
its job.

The default value for overflow is
visible. The overflow property is not
inherited.

Layout with Styles 321

Aligning Elements
Vertically

You can align elements in many differ-
ent ways to make them look neater on
the page than the default alignment
(@ through @).

To align elements vertically:
1. Type vertical-align:.

2. Type baseline to align the element’s
baseline with the parent’s baseline.

Or type middle to align the middle
of the element with the middle of the
parent.

Or type sub to position the element as a
subscript of the parent.

Or type super to position the element
as a superscript of the parent.

Or type text-top to align the top of the
element with the top of the parent.

Or type text-bottom to align the bot-
tom of the element with the bottom of
the parent.

Or type top to align the top of the ele-
ment with the top of the tallest element
on the line.

Or type bottom to align the bottom of
the element to the bottom of the lowest
element on the line.

Or type a percentage of the line height
of the element, which may be positive
or negative.

The vertical-align property works
only on elements displayed inline, not on
elements that display as a block. See Chris
Coyier’s explanation at http://css-tricks.com/
2597-what-is-vertical-align/ for more details.

licensed under the Creative Commons Attribution-NonCommercial-MoDerivs
gend a lether to Creative Commons, E43 Howard Street, 8th Floor, San Franci

Buie lm=lemExs

Q Images are aligned by default to the bottom of
the line.

0 Notice that the alignment is set on the images
themselves, not on the 1i items that contain them.
(See more about lists in Chapter 15.)

.thumbnails img {
vertical-align: middle;

}

licensed under the Creative Commons Attribution-NonCommercial-MoDerivs L
scnd a lother to Creative Commons, 543 Howard Strect, Sth Floon, San Franci

Quie E=TeEEE

0 Now the images are aligned to the middle of
the line.

322 Chapter 1

http://css-tricks.com/2597-what-is-vertical-align/
http://css-tricks.com/2597-what-is-vertical-align/

)
[¥y
Search: I architecture. Gaudi. etc. Go |

h-:q;:\')'le « about e resources s« archives

from my window

Q When you point to the Home link, the cursor
changes to a pointing hand and the link is
highlighted, just as for any other link.

0 I've assigned class="current" to the Home
link when the visitor is on the homepage. By
doing so, | can then change the default color and
the cursor and background color for the hover
states so the Home link doesn’t look like a link.
(Alternatively, you could remove the a element
around the Home link from the navigation in this
instance.)

a.current {
color: #1d3d76;
}

a:hover.current {
background: white;
cursor: default;

i
I " '
Searrh: I architecture, Gaudi atr Go |

hc;%e « about e resources s« archives

from my window

@ Although this continues to be a real, live link, it
no longer looks like one. Since you are already on
the page to which this link goes, that makes sense.

Changing the Cursor

Normally, the browser takes care of the
cursor shape for you, using an arrow most
of the time, a pointing finger to highlight
links @), as well as some others. CSS lets
you take the reins (@) and @).

To change the cursor:
1. Type cursor:.

2. Type pointer for the cursor that
usually appears over links ({4), default
for an arrow (ls), or crosshair (+),
move (+3+), wait (¥), help (2), text (),
or progress ([;E).

Or type auto to get whatever cursor
usually appears in that situation.

Or type x-resize to get a double-sided
arrow, where x is the cardinal direction
one of the arrows should point—that is,
n (north), nw (northwest), e (east), and so
on. For example, the e-resize cursor
might look like this: +.

The cursors vary slightly from browser to
browser and system to system.

Layout with Styles 323

Displaying and
Hiding Elements

The sample page in @ helps demonstrate
the difference between the display and
visibility properties.

The display property is multifaceted. You
can override an element’s natural display
type, such as changing it from inline

to block (@ through @) or vice versa.
There is also a hybrid display type called
inline-block, which allows an element to
appear on the same line as other content
while otherwise behaving like a block-level
element. The display property is also
useful for preventing an element and its
content from occupying any visual space
in the page (@ and @). There are other
values too (see the tips).

Meanwhile, the visibility property’s
primary purpose is to control whether an
element is, well, visible. Unlike the display
property, when you hide an element with
visibility, a blank space shows where
the element and its content would appear
otherwise (@ and @).

o Here’s the HTML: three simple img elements.
The middle one has a class of hide, which I'll take
advantage of in an example later. By default, img
elements display inline

<body>
<img src="assets/img/top.jpg" width="300"
height="125" alt="At the top" />
<img src="assets/img/middle.jpg"
width="300" height="100" alt="In the
middle" class="hide" />
<img src="assets/img/bottom.jpg"
width="300" height="125" alt="At the
bottom" />
</body>
</html>

izl
= b r——————

0 No CSS is applied, so the images appear

next to each other because img elements have a
default style of display: inline, just like phrasing
content elements. (If the browser were narrower,
the images would wrap to fit.) It's simple to change
their style so that each image occupies its own line
instead

0 By changing the images to display: block;,
they now display on their own line just like
paragraphs and other elements that display as
blocks by default

img {
/* Make the elements display on their
own line. */
display: block;

324 Chapter

0 This looks like one image, but it’s the same
three img elements from the sample code O

The only difference is that they each display as

a block instead of inline content thanks to the
simple rule applied in 9. I've left the browser at
the same width so you can see the images appear
on their own lines solely due to the change in their
display property.

9 You’ll recall that the second img has the hide
class applied to it Q When we set hide to have
no display...

img {
display: block;

.hide {
/* Make all elements with this class not
display */
display: none;

¥7) Example of display: none - Moz i =101 |
File Edit Yiew Hiskory Bookmarks Tools Help

|| Example of display: none | + |

o ...no trace of the second image remains.
(I've narrowed the browser, but that doesn’t
affect the result shown.)

To specify how elements
should be displayed:

1. Inyour style sheet rule, type display:.

2. Type block to display the element as
block-level (thus like starting a new
paragraph) () through ©).

Or type inline to display the ele-
ment as inline (not like starting a new
paragraph).

Or type inline-block to display the
element as inline but with block-level
characteristics, meaning you can also
assign the element properties, such as
width, height, margin, and padding,
on all four sides.

Or type none to hide the given element

and completely remove it from the
document flow (@ and @).

See the tips for a link to other display
values.

Layout with Styles 325

To control an element’s visibility:

1. Inyour style sheet rule, type
visibility:.

2. Type hidden to make the element
invisible without removing it from the
document flow () and (D).

Or type visible to reveal the element.

If you use display: none;, no visible
trace remains of the element in the browser.
There is no empty space (). When you use
visibility: hidden;, the space that the hid-
den element would have taken up still remains
in the document flow (;)). All content (includ-
ing any descendants) within the elements is
affected too. For instance, if you set display:
none; to an article element that contains
several p, figure, and img elements, none of
them would display. If you set visibility:
hidden; to the article instead, a blank
space (probably large!) would show.

See example (@ in “Controlling Where
Elements Float” for another example of set-
ting display: block; to an element that has
display: inline; as its default style. In that
case, | applied it to the span element that is
wrapped around the tagline within the site’s
logo.

The display property has several other
values as well, though IE6 and IE7 don’t sup-
port some of them. See more information at
http://reference.sitepoint.com/css/display

(be sure to read the comments too).

The visibility property doesn’t have
to be used in conjunction with the display
property (or vice versa) as it is in

The visibility property has a third
value (apart from inherit): collapse, which
you use with certain parts of table elements.
IE6 and IE7 don’t support it. Learn more about
collapse at http://reference.sitepoint.com/
css/visibility.

@ When we remove the display: none;
declaration from the hide class and change the
visibility property to hidden...

img {
display: block;

.hide {
/* Hide all elements with this class */
visibility: hidden;

) Example of visibility: hidden - Mozi 1O x|
Eile Edit Wew History Bookmarks Tools Help

-

|| Example of visibility: hidden

0 ...an empty space remains where the hidden
image used to be.

326 Chapter

http://reference.sitepoint.com/css/display
http://reference.sitepoint.com/css/visibility
http://reference.sitepoint.com/css/visibility

Style Sheets tor

Mobile to

A last-minute decision to go to the mov-
ies. A bet about the official language of
Andorra. The phone number for a company
where you're fifteen minutes late for a
meeting. A map to the company, because
the reason you’re late is you can’t find it.

We want information immediately, and
with the proliferation of powerful mobile
devices of all shapes and sizes, the Web
can be in your pocket, purse, or backpack
just as easily as it’s at your desk or kitchen
table. And today’s mobile browsers are far
superior to those of even just a few years
ago, largely spurred on by the advent of
Apple’s Mobile Safari browser and the
popularity of the iPhone.

So now it’s up to you and me to build sites
that make it possible for visitors to access
information from any mobile phone, smart-
phone, tablet, laptop, desktop computer,
game console, or future Web-enabled
devices.

In this chapter, you'll learn how to build
one site that works on the entire range of
devices, adapting its layout according to
the device’s capabilities.

Desktop

In This Chapter

Mobile Strategies and Considerations 328

Understanding and Implementing
Media Queries 333

Building a Page that Adapts with
Media Queries 340

Mobile Strategies
and Considerations

Generally, there are two approaches for cre-
ating Web sites suitable for mobile devices:

m Build a dedicated site for mobile
phones. That is, a site that is tailored for
the mobile experience and that is sepa-
rate from the site for desktop and tablet
users. Sometimes tablets— especially
the iPad—get their own version of a site,
making a total of at least three sites.

= Build one site for all. Deliver all

devices—from mobile phones to desk-
top computers—the same HTML, but
style it differently so it's device-appro-
priate. With some additional trickiness,
you can even deliver different image
and video sizes so mobile-phone users
aren’t penalized by large downloads.

(Note that I'll often use “desktop” in this
chapter to mean both desktop computers
and laptops.)

There is no single correct approach that
applies to every situation. However, recent
advances in both technology and Web
development techniques have brought the
idea of a single-site approach to the fore-
front of discussion in the Web community;
more on that in a bit.

A dedicated site for mobile phones

This approach revolves around the idea
that the difference between a Web site
for desktops and a site for mobile phones
does not end with their display size. Most
notably, the context is different. What a
visitor might need when they’re on the
road with their phone will be quite dif-
ferent from what they’re looking for from
home or the office, this approach posits,

328 Chapter 12

0 Here is BART’s site as seen on a desktop
computer. Some other devices, such as the iPad,
are delivered this version by default too. Though
not shown, a link in the footer allows visitors to
switch to the mobile version .

0 BART’s main mobile
site keeps its interface
Advisories simple and omits the
imagery found on the
desktop site 0 so
visitors can access
information quickly. If
you look closely at the
Bike Rules footer, you’ll notice a

AT “Desktop” link, which
points to the site shown
in 0 and another link
to “Older Mobile Site,”
which points visitors to
| |, a simple mobile site at
I \www.bart.gov/wireless/.

QuickPlanner

Real Time Departures

System Map / Station Info
Find A Station

Recent News

and simply miniaturizing the information
from your desktop site won’t be sufficient.
Also, desktop computers tend to be more
powerful and have faster Internet connec-
tions than their mobile-phone counterparts,
so there’s an opportunity to provide a richer
experience.

This approach calls for deciding what
information is particularly useful for mobile
visitors and providing it to them on a
mobile-specific site that requires the least
scrolling, tapping, clicking, downloading,
and waiting.

Although this approach is not exclusive to
large companies or public services, you're
more likely to find examples from them in
the wild, in no small part because they can
afford to develop and maintain multiple
sites. Shopping sites like Amazon and Tar-
get greatly simplify their home pages and
change their navigation strategies on their
mobile sites. For instance, Target (www
target.com) gives their store locator much
more prominence on their mobile site
(sites.target.com/site/en/spot/mobile.jsp),
figuring that a mobile-phone visitor is more
likely to be out and about looking for a
physical store. They also channel visitors
through their vast array of products in a
much different manner, reducing the num-
ber of top-level links for the small screen.

As an agency that provides a public
transportation service, San Francisco Bay
Area Rapid Transit (BART) serves a broad
audience. They provide visitors three site
options: a desktop site (www.bart.gov) @,
a mobile site (m.bart.gov) @, and a further
stripped-down mobile site for older devices
(www.bart.gov/wireless/). Furthermore, they
allow you to switch between the versions
via a link in the footer @, putting control in
their visitors’ hands.

Style Sheets for Mobile to Desktop 329

www.target.com
www.target.com
www.bart.gov
www.bart.gov/wireless/
www.bart.gov/wireless/

Nike provides no fewer than three distinct
experiences, too—one for smartphones,
one for the iPad, and one for the desktop—
that are progressively more image rich.
Similarly, Yahoo! has mobile, tablet, and
desktop experiences.

One site for all

With new devices seemingly hitting the
market each week and new types of
devices no doubt being envisioned behind
company walls, is it realistic—or even desir-
able—to build and maintain separate sites?
We can’t know what’s around the corner,
so this approach advocates building one
site for all devices and then adapting its
layout accordingly.

For most of us, a single site will likely
serve our visitors well. Besides—part of
the argument for a single site goes—today
it's harder to predict someone’s intentions
when they visit our site, especially with
smartphones and their browsers having
become more robust. For instance, it’s not
always a safe bet that the mobile visitor

is, in fact, mobile. I'm sure I'm not alone in
browsing sites on my phone while lounging
on my couch, even with my laptop just on
the other side of the room. In most cases,
I’'m looking at full sites, not mobilized ver-
sions of the desktop experience.

However, there’s no getting around the
smaller screen sizes and reduced band-
width of mobile phones, so it’s still our job
to deliver a site that is suitable for viewing
in this context.

One site for all: making it happen

OK, if one site sounds great, how do you
accommodate such a vast array of devices?

This is where progressive enhancement
really shines. (Please review “Progressive

o Believe it or not, the Food Sense home page
shown here and in and are all from the
same site, www.foodsense.is, not separate sites
hosted at their own URLs. The site uses the
responsive Web design approach so its layout
changes based on the viewing conditions. The
iPhone (shown here) and devices with similar
screen sizes display the layout according to
specific CSS rules. Different CSS rules target other,
larger browser views ({2 and (), adjusting the
layout accordingly.

330 Chapter 12

www.foodsense.is

Enhancement: A Best Practice” in the
book’s introduction for a refresher.) With
your HTML separate from your CSS, you
can provide styles that progressively
evolve the layout for higher resolutions
and more capable devices (@ through ©@).

105 Simulator - IPad / 105 5.0 (9A334)

Ethan Marcotte has given us a blueprint
for doing so, with an approach he dubbed
responsive Web design. His article at
www.alistapart.com/articles/responsive-
web-design/ and his book Responsive
Web Design (A Book Apart, 2011) are
highly recommended. His approach is
rooted in three things:

m A flexible, grid-based layout. This is the
fluid layout approach you saw in Chap-
ter 11, with some slight adjustments. A
responsive site has all width, margin,
and padding properties set in percent-
ages so that all layout components are
relative.

Q Here is Food Sense as seen on the iPad and
other devices with similar screen sizes. The CSS

for this view changes the logo and navigation m Flexible images and media. Assets are

since the browser has more space to display

content. also sized with percentages so that

they scale up and down. (See Ethan’s
- - book excerpt at www.alistapart.com/
articles/fluid-images/.) People have
been developing techniques to deliver
different-sized images based on a
device’s screen size so that visitors on
mobile phones won’t have to wait for
large images to download.

m Media queries. A CSS3 component,
- T = these allow you to adjust the design
" e % 7 = based on media features such as the
. - — width of the browser’s viewable page
O This is the widest view of the site, shown on a area (see the “Understanding the View-
desktop browser. The site has two other layouts port and Using the Viewport meta Ele-
not shown in any of the figures. You can view them . . . s
by visiting www.foodsense.is on your computer ment” sidebar in the next section). You'll
and dragging the corner of the browser to make it learn about them in “Understanding and
narrower or wider. Implementing Media Queries” and then
see them applied in “Building a Page
that Adapts with Media Queries.”

Style Sheets for Mobile to Desktop 331

www.alistapart.com/articles/responsive-web-design/
www.alistapart.com/articles/responsive-web-design/
www.alistapart.com/articles/fluid-images/
www.alistapart.com/articles/fluid-images/
www.foodsense.is

The Web community has rallied around the
idea of building responsive sites, sharing
techniques that build upon Ethan’s founda-
tion. And the approach isn’t just for humble
blogs. The Boston Globe (www.bostonglobe
.com) became the talk of the town when it
launched its new site, which was built on a
foundation of responsive Web design.

We’ll focus on this approach for the remain-
der of the chapter. You'll learn how to apply
a mobile-first approach to the site from
Chapter 11, progressively layering in CSS
for larger screen resolutions with media
queries((® through @2).

Still, it is not a one-size-fits-all solution. As
noted, there are cases where the context,
desired content, navigation, appearance,
and interactions are different enough to
warrant a separate site.

Luke Wroblewski began championing the
notion of “mobile first” design in November

of 2009 (www.lukew.com/ff/entry.asp?933).
The premise is to design a site with the mobile
experience in mind and then carry those
principles to its desktop counterpart (if, in
fact, those sites are different). By doing so, he
suggests, you’re more likely to identify which
content is critical for users of all devices. You
can watch his presentation on the topic at
www.lukew.com/ff/entry.asp?1137. He’s also
written a book, aptly named Mobile First (A
Book Apart, 2011).

Jeremy Keith summed up the “one site
for all” approach to excellent effect in his “One
Web” presentation (www.vimeo.com/27484
362/). (For those of you who prefer to read,
the transcript is available at www.adactio.com/
articles/4938/.)

Both videos are highly recommended. In
fact, feel free to watch them now. I'll wait!

332 Chapter 12

www.bostonglobe.com
www.bostonglobe.com
www.lukew.com/ff/entry.asp?933
www.lukew.com/ff/entry.asp?1137
www.vimeo.com/27484362/
www.adactio.com/articles/4938/
www.adactio.com/articles/4938/
www.vimeo.com/27484362/

o The styles in base.css are used for all output
devices. The styles in styles-480.css are used
only in browsers that support media queries and
when the viewport is at least 480 pixels wide.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Media queries in link elements
</title>
<meta name="viewport" content="width=
device-width, initial-scale=1.0" />
<link rel="stylesheet" media="all"
href="base.css" />

<l--
The Iogic is only.
The type is screen.
The feature: value is min-width: 480px.
-
<link rel="stylesheet" media="only
screen and (min-width: 480px)"
href="styles-480.css" />
</head>
<body>

Understanding
and Implementing
Media Queries

As you learned in the section “Using
Media-Specific Style Sheets” in Chapter 8,
you can target your CSS to specific media
types in two ways. (There is a third way,
the @import rule, that we didn’t cover,
because it affects performance.) To recap,
the first way is via the media attribute of
the 1ink element; for example, <1ink
rel="stylesheet" href="global.css"
media="screen" />, which goes in your
page’s head. The second way is with an
@media rule in your style sheet:

/* Print style sheet */

@media print {
header[role="banner"] nav,
.ad {

display: none;

}

Media queries enhance the media type
methods, allowing you to target your styles
to specific device features €). They're par-
ticularly handy for adjusting your site’s pre-
sentation so that it adapts to different screen
sizes. The following is a list of the media
features you can include in media queries:

= width = color

= height ® color-index
m device-width = monochrome
m device-height = resolution
®m orientation ® scan

m aspect-ratio = grid

m device-aspect-ratio

Style Sheets for Mobile to Desktop 333

There are some non-standard media fea-
tures too, such as

m -webkit-device-pixel-ratio
m -moz-device-pixel-ratio

For all but orientation, scan, and grid,
you can include min- and max- prefixes.
The min- prefix targets values that are
“greater than or equal to,” while max-
targets values that are “smaller than or
equal to.” We’'ll focus on min-width and
max-width in this chapter, because they
are the two media features you’ll use over
and over for responsive pages. Descrip-
tions for all media features are available
in the CSS3 Media Queries spec (Www.
w3.org/TR/css3-mediaqueries/#medial).

Media queries enjoy great support among
modern desktop and smartphone brows-
ers. However, Internet Explorer 8 and
below do not support them (see the

first tip for a solution for min-width and
max-width).

Media query syntax and examples

With a large nod to Peter Gasston’s The
Book of CSS3 (No Starch Press, 2011),
which summarizes this very well, here’s the
basic syntax for media queries.

m For a link to an external style sheet:

<link rel="stylesheet" media=
"logic type and (feature:
value)" href="your-stylesheet.

css" />
m For a media query within a style sheet:

@media logic type and (feature:
value) {

/* your targeted CSS rules go
here */

0 This crude example contains default paragraph
styling followed by changes to the paragraph text
when the media query is true. I've saved this style
sheet in basic-media-query.css, and I've loaded
it into the page shown in (£). You can see the
results in through

/* Your regular styles go here. Every device
gets them unless they are overridden by
rules in the media queries. */

body {

font-size: 100%;

}
p{

color: green;}

/*
The logic is only.
The type is screen.
The feature: value is min-width: 480px.
*/@media only screen and (min-width:
480px) {
/* Your styles for this condition go
here. */
p{
color: red;
font-weight: bold;

}

0 This page links to the external style sheet in
which contains a basic media query example.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Basic media query example</title>
<meta name="viewport" content="width=
device-width, initial-scale=1.0" />
<link rel="stylesheet" href="assets/
css/basic-media-query.css" />
</head>
<body>
<p>Hi, I'm a paragraph. By default, I'm
green and normal. But get me in a
viewport that's at least 480px wide,
and I get red and bold!</p>
</body>
</html>

334 Chapter 12

www.w3.org/TR/css3-mediaqueries/#media1
www.w3.org/TR/css3-mediaqueries/#media1

0 Mobile Safari’s view-
port in portrait mode

is 320 pixels wide, so
the text remains green
per the base styles

in the style sheet. (It
inherits the normal
font-weight from

the browser’s default
styles.) However, when
, the page is viewed on
~aniPad...

108 Simulator - IPad [105 5.0 (9A334)

G ...the text turns red and bold because the
browser’s viewport is 768 pixels wide in portrait
view on the iPad, and the media query triggers
when the width is 480 pixels or greater. It also
takes effect on the iPhone in landscape mode,
which has a viewport width of exactly 480 pixels.

I'll explain the syntax further shortly, but a
couple of quick examples (€Y and @) will
help put everything in context. The queries
in the examples are identical, but the
means by which they deliver the styles are
different. The example in €) translates to
“Load and use the rules in styles-480.css
only when the media type is screen and
the minimum width of the viewport is 480
pixels.” The example in) translates to
“Use the following rules only when the
media type is screen and the minimum
width of the viewport is 480 pixels.” (See
the sidebar “Understanding the Viewport
and Using the Viewport meta Element”

to learn the meaning of viewport.) I've
created a test page @ that links to a style
sheet that contains the code from €). You
can see the results on an iPhone @, an
iPad @, and a narrow desktop browser @.

Returning to the syntax, let’s explore its
components:

m The logic portion is optional and can
have a value of either only or not.
The only keyword ensures that older
browsers don'’t try to read the rest of
the media query, ignoring the linked
style sheet altogether. The not keyword
negates the result of the media query,
making the opposite true. For example,
media="not screen" will load the style
sheet if the media type is anything
other than screen.

= The type portion is the media type,
such as screen or print.

m A feature: value pair is optional,

but if present, it must be enclosed in
parentheses and preceded by the word
and. The feature is one of the pre-
defined media features, like min-width,
max-width, orientation, or the others.
The value is optional for the color,
color-index, and monochrome features.

Style Sheets for Mobile to Desktop 335

You can chain together sets of features
and values with and, as well as create a

list of media queries by separating each
media query with a comma. A whole media
query list is true if any one of the media
queries in the comma-separated list is
true. @ and @ show a variety of media
queries.

To define a media query when
linking to an external style sheet:
1. Type <link rel="stylesheet" in the

head section of each HTML page in
which you wish to use the style sheet.

2. Type media=" to begin the media query.

3. Create your media query by following
the steps in “To define a media query.”

4. Type " to end the media query.

5. Type a space and then href="url.css",
where url.css is the path to and
name of the style sheet that should be
applied to the page when the media
query is true.

6. Type a space and the final /5. (Or if
you prefer, type no space and simply >.
HTMLS allows both approaches, and
the results are the same.)

To define a media query and

associated rules within a style sheet:

1. Within your style sheet, type @media
followed by a space.

2. Create your media query by following
the steps in “To define a media query.”

3. Type a space and {.

4. Optionally starting on a new line, create
the style rules that should apply to the
page when the media query is true.

5. Type } (optionally on a new line) to
complete the media query block.

e Basic media query example
-5 —

Hi, I'm a paragraph. By default, I'm green and normal.
But get me in a viewport that's at least 480px wide,
and I get red and bold!

J Basic media query example

o Modern desktop browsers understand media
queries too. Here is Firefox with the lower-right
corner dragged in to make the viewport narrower
than 480 pixels, so the text is green with a normal
font-weight. If | were to stretch the window so it’s
at least 480 pixels, the text would turn bold and
red immediately—no page refresh required.

@ Examples of other media queries used to load
external style sheets when true.

<link rel="stylesheet" media="only
screen and (min-width: 480px)
and (max-width: 767px)" href=
"styles.css" />

<link rel="stylesheet" media="only
screen and (orientation:
landscape)" href="styles.css" />

<link rel="stylesheet" media="only
print and (color)" href="color-
pages.css" />

<link rel="stylesheet" media="only
print and (monochrome)"
href="monochrome-pages.css" />

<link rel="stylesheet" media="only
screen and (color), projection and
(color)" href="styles.css" />
</head>
<body>

336 Chapter 12

0 These are the same media queries as in
but they appear directly in a style sheet.

/* Base Styles
/* your base rules for all devices */

/* Begin Media Queries
_______________________________ */
@media only screen and (min-width: 480px)
and (max-width: 767px) {
/* your rules */

}

@media only screen and (orientation:
landscape) {
/* your rules */

}

@media only print and (color) {
/* your rules */

}

@media only print and (monochrome) {
/* your rules */
}

@media only screen and (color),
projection and (color) {
/* your rules */

}

To define a media query:

1. Optionally, type only followed by a
space. (Although this is optional, |
recommend including it except when
specifying not.) If you don’t specify
only, optionally type not followed by
a space to indicate that you’d like the
opposite of the media query result to
be true.

2. Type type, where type is the media
type (typically screen or print; see
“Using Media-Specific Style Sheets” in
Chapter 8).

3. Optionally, type a space, then and, then
another space. Next type (feature:
value), where feature is one of the
predefined media features: width,
height, device-width, device-height,
orientation, aspect-ratio, device-
aspect-ratio, color, color-index,
monochrome, resolution, scan, or
grid, and where value is an appro-
priate feature value (oftentimes, but
not exclusively, expressed in pixels or
ems; see (), (9, and for examples).
Where allowed and as desired, prefix
the feature with min- to target a value
that is “greater than or equal to” or with
max- to target a value that is “smaller
than or equal to.” The value is optional
for the color, color-index, and
monochrome features.

4. If you'd like to create a list of media
queries, type a comma and then repeat
steps 2 and 3. Otherwise, your media
query is complete.

continues on next page

Style Sheets for Mobile to Desktop 337

See “Rendering the media query styles in
IE8 and below” to learn how to patch deficien-
cies in those versions of IE.

Any base style rules you include outside
the media queries are applied to all devices.
You can override those as desired with media
queries. To clarify, declarations within media
query rules only write over conflicting declara-
tions in the regular styles, such as color:
green; in the case of (). If the p rule before
the media query had included font-style:
italic;, paragraph text would still be itali-
cized when the media query is true, because
the p rule within the media query doesn’t
specify font-style.

The iPhone increases a page’s zoom
level when you rotate the phone to land-
scape mode. As a result, some content
typically is out of view, requiring visitors to
manually zoom back down to get the width
within the boundaries of the screen. There

is a way to prevent this, but at the very
unfortunate cost of also preventing visi-

tors from being able to change the page’s
zoom level. However, if you must control

the behavior, add the highlighted portions

of this code: <meta name="viewport"
content="width=device-width,
initial-scale=1.0, maximum-scale=1.0,
user-scalable=no" />. 1 advise against it,
though. Instead, omit those two properties and
let your visitors control zooming on your site.

You can use Apple’s free iOS Simulator
to test the example pages on the iPhone and
iPad. See the “Mobile Coding and Testing
Tools” sidebar in the next section.

338 Chapter 12

Understanding the Viewport and Using the Viewport meta Element

The viewport is the area within a browser that displays your page, both on desktop and mobile
browsers. It doesn’t include things like the browser’s address bar or buttons, just the browsing
area. The media query width feature maps to the viewport width. However, this is different than

the device-width feature, which is the width of the screen.

These values are often different by default on mobile devices such as the iPhone. The viewport

of Mobile Safari, which is the iPhone’s browser, is 980 pixels wide by default, but the iPhone
screen is only 320 pixels wide (it’s 480 pixels high). So the iPhone takes what is akin to a desktop
browser set to 980 pixels wide and scales it down to fit in the screen width of 320 pixels in portrait

mode @. As a result, when you navigate in Mobile Safari to
most Web sites that have been built for desktop browsers,
it displays a zoomed-out view of them. It does the same
thing in landscape mode, but the width is 480 pixels. As
you can see in @9, pages are often hard to read without
zooming in. (Be aware that the default viewport width var-
ies among devices.)

Fortunately, there’s a quick solution for fluid layouts (that

is, layouts built with percentage widths in CSS). Simply add
the viewport meta element to the head of your pages.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="utf-8" />
<title>Fancy page title</title>

o My test page
contains a green
div that is 320 x
480. By default,
Mobile Safari’s
viewport is 980
pixels wide, so the
iPhone shrinks it to
display it within the
320px-wide screen.
That’s why the
green box occupies
roughly a third of
the screen’s width
(that is, 320/980).

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

</head>
<body>

coe

The important part of this code is width=device-width.
With that in place, the viewport width is set to be the
same as the device width (for the iPhone, that’s 320
pixels), so page content of that width fills the screen in
portrait mode @. Without including this, you won’t get the
results you expect from your media queries that leverage
min-width and max-width.

The initial-scale=1.0 portion of the code has no bear-
ing on the width and device-width values, but it's com-
mon to include it. It sets the initial page zoom level to 100%.
You can also specify values less than or greater than 1.0.

Thia bax Is Iecn

o This test page’s
code is exactly
the same as in
except it has the
viewport meta
element set to
width=device-
width. As you can
see, the viewport
width and the
screen width are
the same now.

Although not shown, three other properties exist. Set minimum-scale to a number greater than 0
and as high as 10.0 to effectively set the page’s minimum zoom level. See the tips for information

on the maximum-scale and usex-scalable properties.

Style Sheets for Mobile to Desktop 339

Building a Page
that Adapts with
Media Queries

The previous section explained how media
queries work. Now you’ll see how to

apply them to a full page so that its layout
adapts to a device’s viewport size. This is
the same technique used in Ethan Mar-
cotte’s responsive Web design approach.
However, | do not adapt the image sizes,
as responsive designs typically do (it isn’t
mandatory). I'll use our page from Chapter
11 as the example.

I’'m not going to show you all the style rules

| apply within each media query block,
because those will be different from one site
to another. The important thing is to know
how to approach building a responsive site,
and the types of media queries used to
achieve that. You can view the completed
page and its code at www.bruceontheloose.
com/htmlcss/examples/.

Creating your content and HTML

Everything should begin with solid, carefully
considered content. If you attempt to design
and build your site with placeholder text (the
vaunted lorem ispum), you may find that it
doesn’t hold together well when you drop in
real content. So if possible, do the legwork
up front so you can be confident you're
designing and developing a site that will
serve your visitors (and you) well.

The underlying HTML for the example
page is the same as for the page in
Chapter 11, with three exceptions:

m | added <meta name="viewport"
content="width=device-width,
initial-scale=1.0" /> to the head ele-
ment. See the sidebar “Understanding
the Viewport and Using the Viewport

o A sampling of the base styling | apply for all
devices. The rules are just like others you've seen
leading up to this chapter—they are not encased in
media query blocks.

/* Base Styles

body {
color: #1d3d76;
font: 100% "Trebuchet MS", Verdana,
sans-serif;

}

h1,

h2,

h3,

h4,

hs,

hé,

.logo {
color: #b74e07;
font-weight: bold;

}

h1 {
font-size: 1.25em; /* 24px/16px */
text-transform: lowercase;

}

.nav 1i {
display: inline;
font-size: .7em;

}

340 Chapter12

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

0 The iPhone supports media queries, but |
haven’t added them to the style sheet yet. I've
done the base styles only, so these screen shots
are representative of what browsers that don’t
support media queries will render. The page layout
is linear, with the portion in the image on the right
appearing below the “recent entries.” The page
footer is below that, but not shown.

meta Element” for details about what
this does. | recommend you include this
meta element in your pages if you're
implementing a flexible layout.

= | removed the tiny thumbnail images
at the very bottom of the page (there
were more than 20 of them). Keeping
bandwidth (and device capabilities) in
mind, it was more images than | would
recommend requiring all devices to
load by default. If | wanted to get fancy,
| could write some server-side code
or JavaScript that loads the images
dynamically for larger screens. That’s
beyond the scope of what we can cover
here, however.

m | added a call to respond.js near the
bottom of the page to make the media
queries work in IE8 and below. See
“Rendering the media query styles in
IE8 and below.”

Choosing a design
implementation approach

There are at least a couple of ways

to approach building a responsive page.
Both approaches use the same HTML,
but some of the CSS is different. Here
they are in summary:

Approach 1: Build a baseline for all
devices, and then work your way up from
small screen (mobile) to large (desktop)

1. First, provide baseline styles for all
devices @. This usually includes basic
font formatting, colors, and maybe
tweaks to default margin and padding
settings, but no floats or positioning
of elements. Content will run top to
bottom according to the normal docu-
ment flow. The goal is for your site to
be legible and presentable in a single
column @. As a result, the site will

Style Sheets for Mobile to Desktop 341

be accessible to all devices, new and
old, that have a Web browser. It might
look a little different from device to
device, but that’s to be expected and is
perfectly fine.

2. Work your way up from there, using
media queries to define styles for pro-
gressively larger screen sizes (or other
media features, like orientation). The
min-width and max-width media query
features will be your main tools most of
the time (@ through @).

This approach is typically referred to as
mobile-first responsive Web design.

Approach 2: Build for the desktop, and
then address different device screen sizes

1. Style the desktop version of your site
first (see Chapter 11).

2. Use media queries to override styles for
other, smaller screen sizes.

The first approach has gained a lot of trac-
tion in Web circles because it embraces
progressive enhancement. I'll use this
approach in the example so you can see
how it's done. You could test the second
approach yourself by using the finished
page from Chapter 11 as a starting point
and adding media queries for smaller
screen sizes based on what you learn here.

G | add one rule for devices with a viewport that
is at least 320 pixels wide. This makes the text
wrap around the image in the blog entries). |
didn’t include this rule in the base styles because
some mobile phones (even smartphones) have
narrower screens that would make narrow text
next to the image hard to read.

/* Base Styles

___________________________________ */
@media only screen and (min-width: 320px) {

.photo {
float: left;
}

Carrier = 6208 AM

photobarcelona...

A

A _Z

_

0 Text wraps around the images in the blog-entry
intros, thanks to the media query defined in

The style takes effect in the iPhone because the
viewport is 320 pixels wide in portrait mode.

342 Chapter 12

G Now the style sheet has a media query

that targets devices with a viewport of at least
480 pixels. This represents larger phones, like
several Android models, as well as the iPhone in
landscape mode

/* Base Styles

___________________________________ */
@media only screen and (min-width: 320px) {

}

/* 480px and up
___________________________________ */
@media only screen and (min-width: 480px) {

.intro {
margin: -.9% 0 0 110px;
}

.entry .date {
margin: 0;
text-align: right;
position: relative;
top: -lem;

}

#main .continued {
margin-top: -1%;
text-align: right;

}

7:48 AM

I Clofster

Outsicle it feels like & battle fs

o Here’s the middle part of the page viewed at
480 pixels wide. Because there’s more screen real
estate, | stopped text from wrapping around the
images and aligned the date and the “continued”
link to the right.

Evolving your layout

OK, so you’ve got your content together,
it’s marked up with semantic HTML, and
you’ve decided to go with Approach 1to
implement your design. €9 through
illustrate how | began with base styles for
all devices and gradually worked my way
up until | had a layout that is suitable for a
range of viewport sizes and devices.

In responsive Web design lingo, you lever-
age media queries to define styles for each
breakpoint in your page—that is, each
width at which your content would benefit
from adjustment. In the case of the exam-
ple, | created style rules for the breakpoints
in the list that follows. Keep in mind that for
each minimum width case with no maxi-
mum width counterpart, the styles target
devices at that min-width and all the way
up, including the desktop.

= A minimum width of 320 pixels ({9 and
). This targets the iPhone, the iPod
touch, and numerous Android and other
mobile phones in portrait mode.

® A minimum width of 480 pixels ({2 and
). This targets larger mobile phones
such as several HTC models, as well
as many of the 320-pixel devices when
in landscape mode (the iPhone, the
iPod touch, and certain Android models
among them).

® A minimum width of 600 pixels ((& and
). | set these rules primarily for the
benefit of narrow desktop browsers,
but, as always, they apply to any device
that displays at this minimum width.

= Within the range of a minimum width
of 600 pixels and a maximum width
of 767 pixels ({2 and ()). The layout
of the masthead was falling apart in
this range—it was primarily viewable

continues on page 346

Style Sheets for Mobile to Desktop 343

@ These media queries start the transition of the masthead from the linear layout to the horizontal approach.
It makes the page more presentable on desktop browsers when at a moderate width ().

/* Base Styles

___________________________________ */
@media only screen and (min-width: 320px) {

}

/* 480px and up
___________________________________ */
@media only screen and (min-width: 480px) {

}

/* 600px and up
___________________________________ */

@media only screen and (min-width: 600px) {

#container {
background: url(../img/bg-bluebench.
jpg) repeat-y;
margin: 20px auto;
padding: 30px 10px 0 0;
width: 90%;
}

.logo {
float: left;
font-size: 2em; /* 32px/16px */

}

}
/* From 600px-767px, not beyond

@media only screen and (min-width: 600px)
and (max-width: 767px) {

.logo {
background: #eee;
font-size: 1.825em;

code continues in next column

#masthead form {
width: 235px;
}

input[type="text"] {
width: 130px;
}

.nav 1i {
font-size: .625em;
font-weight: bold;
padding-left: 1%;
}

Be [t Yew Moy Podmais ok e
T ——— |

- AV

photobarcelona...

Eplarinng Baroetound cutiord Hracsires o o

y
seurch [archvestne. Goust e | GBI

home about retource: archives

recent entries

Hezpital Sant Pau June 26, 2011
3 The Saint Paul Hospltal at the top of Gaudi Avenue in
the Sagrada Familia neighberhood is an
oft=overooked gem of modernist architecture,
flthcugh the building was begun In 1902 under the

lon of the architect Liuis Domé

din

c | Mantaner,

itsell dates froem the 14th century, It ‘
ser me 34,000 inpatients yearly, along with

more than 150,000 emargency room...

the ho:

hane 34, 7011

Cathadral Closter

right in hanor of Sant

celana's 12th century

ar the trickle of

5 evenywhers alge in =1

oan, but in
Cathedral, its
the water from the
Barcelona, Saint George 5 slaying his dragen here.

0 With the styles from @ the page is inching
ever closer to its complete form. The content
layout is still a single column, but now the search
field and main navigation are alongside the logo.
Also, the background image around the page
makes its first appearance.

344 Chapter12

o This is the final media query, targeting viewports that are at least 768 pixels wide. This is true for most
desktop browsers (unless the user has made it narrower, as in (1)), but it also maps to the width of the iPad

and some other tablets in portrait mode

/* Base Styles

___________________________________ */
@media only screen and (min-width: 320px) {

}

/* 480px and up
___________________________________ */
@media only screen and (min-width: 480px) {

}
/* 600px and up

___________________________________ */
@media only screen and (min-width: 600px) {

}
/* From 600px-767px, not beyond

@media only screen and (min-width: 600px) and
(max-width: 767px) {

}
/* 768px
___________________________________ */

@media only screen and (min-width: 768px) {

#container {
max-width: 950px;

}
#page {
padding-left: o;
width: 97.9167%;
}
.nav 1i {
display: list-item;
float: left;
font-size: .75em; /* 12px/16px */
}

code continues in next column

#main {
float: left;
width: 71%;
}

#related {
margin-left: 72%;
}

#footer {
clear: both;
}

105 Simulator - IPad [106 5.0 (9A334)

=0]

E

photobarcelona...

o With the styles from @1, the page is complete.
The iPad’s rendering is shown here, but it looks
similar on desktop browsers (though wider if the
visitor has expanded the browser). The main
content column and sidebar automatically stretch,
because their widths are based on percentages.

Style Sheets for Mobile to Desktop 345

when resizing a desktop browser—so
| created these styles to clean that
up and bridge the gap until the final
breakpoint.

® A minimum width of 768 pixels (
and @). This suits desktops both old
and new, as well as the iPad and other
tablets.

Your breakpoints may be different from the
ones | used. It depends on what is right for
your content, design, and audience.

For instance, some people define a media
query for (min-width: 992px), and some-
times yet another beyond that for higher
resolutions. Instead, | added max-width:
950px; to the #container selector of the
example page @). With that defined, the
layout is flexible up until 950 pixels but
won’t stretch beyond it, so | don’t specify
media queries greater than that width.
Note that this max-width is of the layout
property variety and is not a media query
feature like (max-width: 950px).

You also can stray from the breakpoints
that align with the exact device viewport
widths. If a media query based on (min-
width: 700px) is best for presenting your
content, use it. For that matter, you don’t
have to use pixels as the unit. You could
create a media query that uses ems, like
(min-width: 20em).

346 Chapter 12

Mobile Coding and Testing Tools

Testing your pages on mobile phones and tablets presents a special challenge because it can be
difficult to get your hands on devices. Although there is nothing like testing on the real thing, there
are some techniques and tools you can use while coding and conducting initial testing:

Resize your desktop browser to approximate the viewport size of various mobile phones and
tablets while you write your styles. This is a crude method to be sure, but it can help you get
your styles in the ballpark so you'll have less refining to do after you’ve done proper testing
on devices. However, do resize your browser in and out to test how your layout adjusts when
viewed on the desktop.

Use ProtoFluid (www.protofluid.com) during initial development. It’s a free, browser-based tool
that provides views that map to a few popular device sizes. Again, it’s not for formal testing,
because it doesn’t behave like phones or the iPad, but it is helpful during initial coding. (A little
warning that it’s not the most intuitive tool to use. You might have to fiddle with it a bit to get the
hang of it.) Your pages will need to be on a server for you to view them in ProtoFluid. It can be
the server your Web hosting company provides (see Chapter 21) or one you run on your com-
puter for development purposes (search online for “set up localhost server”).

Use Apple’s free iOS Simulator for testing your pages for the iPhone and iPad. Now we’re
getting somewhere. This is the next best thing to testing on the actual devices. You’ll notice |
used it in some of the screen shots. However, it only works on OS X, and there is no Windows
equivalent. The iOS Simulator is part of the free Xcode download, available at http://developer
.apple.com/xcode/.

Use Electric Mobile Simulator for Windows (www.electricplum.com/dlIsim.html), which is per-
haps the best tool of its kind for Windows. Just so there’s no mistake, this is not equivalent to
Apple’s iOS Simulator.

Use emulators and simulators for other devices and mobile browsers. Mobile Boilerplate main-
tains a list of links to mobile emulators and simulators for iOS, Android, Nokia Symbian, and
more at https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-Emulators-&-Simulators.

With any luck, you have some friends with a few different devices that you can test on, too. Ask
around!

Style Sheets for Mobile to Desktop 347

www.protofluid.com
http://developer.apple.com/xcode/
http://developer.apple.com/xcode/
http://developer.apple.com/xcode/
www.electricplum.com/dlsim.html
https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-Emulators-&-Simulators

Rendering the media query
styles in IE8 and below

There’s one caveat to writing baseline
styles and then adapting the design with
media queries: Internet Explorer 8 and
below don’t support media queries. That
means they only render the styles you
define outside of media queries; namely,
the baseline styles. Collectively, IE6, 7,
and 8 still represent a healthy portion of
traffic on most sites, so chances are you'll
want those visitors to see your design as
intended.

Scott Jehl set out to fix this problem, and
he created a lightweight script, respond.js,
that makes min-width and max-width
media queries work in the older versions of
IE. It's available at https://github.com/scott
jehl/Respond. Activate the respond.min.js
link to see the code, then copy it, paste it in
your text editor, and save it as respond.js.

Although the script also makes min-width
and max-width media queries work in
other old browsers, there aren’t any old
browsers of significance. So you may want
to use a conditional comment to instruct
only IE8 and below to load the script, as
shown in .

Alternatively, if you plan to use Modernizr
(www.modernizr.com) in your project, you
can include respond.js with Modernizr’s
configuration build tool instead of down-
loading and calling it separately from your
HTML page. See “Using Polyfills for Pro-
gressive Enhancement” in Chapter 14 for
a little bit more about Modernizr, and see
Chapter 19 for more on scripts.

o By putting the script element in this conditional
comment, only Internet Explorer 8 and below

will load respond.js. Replace the assets/js/

part of the sxc value with the path (if different)

to respond.js on your site. When all is set, IE8
and below will understand the media queries and
render the styles accordingly.

<footer id="footer"
role="contentinfo">

</footer>
</div>
</div>

<!--[if 1te IE 8]>
<script src="assets/js/respond.js">
</script>
<![endif]-->
</body>
</html>

348 Chapter 12

www.modernizr.com
https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond

To build a page that adapts
with media queries:

1.
2.

Create your content and HTML.

In the head element of your HTML
page, type <meta name="viewport"
content="width=device-width,
initial-scale=1.0" />. (See the side-
bar “Understanding the Viewport and
Using the Viewport meta Element” in
the “Understanding and Implementing
Media Queries” section.)

Choose a design implementation
approach. | recommend you first create
a baseline of styles for all devices and
then work your way up with media que-
ries as demonstrated in the example.
However, you could implement the
desktop layout first (see Chapter 11) and
then apply media queries for smaller
devices afterward if you prefer.

Adapt your layout for different viewport
widths, as appropriate for your con-
tent. Identify breakpoints and create
associated media queries according
to the steps described in “Understand-
ing and Implementing Media Queries”
and as demonstrated in (9, (9, (&, and
. Along the way, make your page’s
layout fluid by using percentages for
width, margin, and padding whenever
possible.

If you'd like IE8 and below to ren-
der style rules within min-width and
max-width media queries, obtain
respond.js (as explained in “Ren-
dering the media query styles in IE8
and below”).

continues on next page

Style Sheets for Mobile to Desktop 349

6. If you performed step 5, link to
respond.js from your page by typing
the following code above the </body>
end tag

<!--[if 1te IE 8]>

<script src="path/respond.js">
</script>

<![endif]-->

The path equates to the location of
the JavaScript file on your site, and
respond.js equals the name of the
JavaScript file you saved. The condi-
tional comments around the script
element are optional.

7. Test away! (See the “Mobile Coding and
Testing Tools” sidebar.)

8. Refine your CSS and media queries in
step 4 as necessary, and test until the
page renders as desired across a range
of devices.

As shown in (&), (9, (£, and 1, all of the
example page styles are in one style sheet.
Alternatively, you could use the instructions
found in “Understanding and Implement-

ing Media Queries” to link to separate style
sheets. Generally, a single file is better for per-
formance as long as it isn’t abnormally large,
because the fewer the files the browser has to
download, the sooner it will render the page.

Eivind Uggedal’s http://mediaqueri.es
site is an ever-expanding gallery of respon-
sive sites in the wild. It’s worth a look for
inspiration.

Mobile Boilerplate (www.htmI5boil-
erplate.com/mobile) is a Web page starter
template that incorporates many mobile

best practices. The team behind it has also
provided a handy matrix of specifications for
modern mobile devices (both smartphones
and tablets) at https://github.com/h5bp/
mobile-boilerplate/wiki/Mobile-Matrices. As
the page notes, the information can be helpful
when crafting media queries.

350 Chapter12

http://mediaqueri.es
www.html5boil-erplate.com/mobile
www.html5boil-erplate.com/mobile
https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-Matrices
https://github.com/h5bp/mobile-boilerplate/wiki/Mobile-Matrices

If you want to target styles for high-pixel-
ratio devices such as the iPhone 4 and phones
using the Opera Mobile 11 browser, use the
following media query:

@media only screen and (-webkit-min-
device-pixel-ratio: 1.5), only
screen and (-o-min-device-pixel-
ratio: 3/2), only screen and
(min-device-pixel-ratio: 1.5) {

/* your rules */

}

This recommendation comes courtesy of
Mobile Boilerplate.

320 and Up (http://stuffandnonsense
.co.uk/projects/320andup/), created by Andy
Clarke and Keith Clark, is another starter tem-
plate. It mirrors the methodology shown here,
starting with a set of default styles and scaling
up the layout from there with media queries.

Luke Wroblewski nicely sums up the
current state of affairs regarding building
responsive sites at http://www.lukew.com/ff/
entry.asp?1436. His article also contains sev-
eral links for further reading.

Maximiliano Firtman maintains a matrix
of HTML5 and CSS3 support among modern
mobile devices at http://mobilehtml|5.org. (A
lot of the information pertains to the advanced
HTMLS5 features not covered in this book.)

If respond.js isn’t working, take a
look at the “Support & Caveats” section

at https://github.com/scottjehl/Respond. If
you're still having trouble, try putting the
highlighted code from (¥ just above your
page’s </head> end tag instead of before
the </body> end tag.

Learn more about conditional comments
at www.quirksmode.org/css/condcom.html.

Style Sheets for Mobile to Desktop 351

http://stuffandnonsense.co.uk/projects/320andup/
http://stuffandnonsense.co.uk/projects/320andup/
http://www.lukew.com/ff/entry.asp?1436
http://www.lukew.com/ff/entry.asp?1436
http://mobilehtml5.org
www.quirksmode.org/css/condcom.html
https://github.com/scottjehl/Respond

This page intentionally left blank

Working with
Web Fonts

Over the past few years, we have observed

a renaissance in using fonts on the Web. In ThiS Chapter
Whereas we used to have a very limited

choice of typefaces, now, thanks to Web What Is a Web Font?
fonts, we have myriad options for choos- Where to Find Web Fonts

ing typefaces for Web projects. Watching

Downloading Your First Web Font
this change unfold is both fascinating and 9

extremely exciting. Working with @font-face
Choosing a font used to be relatively Styling Web Fonts and Managing
simple. By default, you were limited as to File Size

what fonts you could expect users to have

354
356
358
360

365

installed on their computers. This is the
reason most Web sites have their body
copy set in Georgia, Arial, Verdana, or Tre-
buchet. These typefaces all look reason-
ably nice at small text sizes, and they come
installed on any Mac or Windows computer.

It’'s not silly or an exaggeration to say that
now we’re in a whole new world.

What Is a Web Font?

Web fonts are made possible thanks to the
@font-face CSS rule, which allows CSS to
link to a font on a server for use in a Web
page.

Many people think Web fonts are new. In
fact, Web fonts have been around since
1998. Netscape Navigator 4 and Internet
Explorer 4 both adopted this technology,
but neither of their implementations sup-
ported standard font file formats, so they
didn’t see much use. It wasn’t until nearly a
decade later that browsers started adopt-
ing this standard with more common font
file types and that the use of Web fonts
started to become commonplace.

Web font file formats
Web fonts come in an array of file types.

m Embedded OpenType (.eot). Internet
Explorer 8 and earlier support only
Embedded OpenType for use with
@font-face. A Microsoft proprietary
format, Embedded OpenType uses
digital rights management technology
to prevent unlicensed use of the font.

m TrueDoc. Originally used by Netscape
Navigator 4.0, but no longer used or
supported.

m TrueType (.ttf) and OpenType (.otf). The

standard font file types used for desk-
top computers, TrueType and Open-
Type are widely supported by Mozilla
Firefox (3.5 and later), Opera (10 and
later), Safari (3.1 and later), Mobile Safari
(iOS 4.2 and later), Google Chrome (4.0
and later), and Internet Explorer (9 and
later). These formats do not use digital
rights management.

Scalable Vector Graphics (.svg). This for-
mat is used in special situations where
other formats aren’t supported, such as
on earlier versions of mobile Safari.

Web Open Font Format (.woff). This
newer standard is designed specifically
for use as a Web font. A Web Open
Font Format font is a TrueType or Open-
Type font that has been compressed.
The WOFF format also allows additional
metadata to be attached to the file;

this can be used by font designers or
vendors to include licensing or other
information beyond what is present in
the original font. Such metadata does
not affect the rendering of the font in
any way, but it may be displayed to the
user on request. The Web Open Font
Format is supported by Mozilla Firefox
(3.6 and later), Opera (111 and later),
Safari (5.1 and later), Google Chrome
(6.0 and later), and Internet Explorer

(9 and later). Considering the wide
support for Web Open Font Format,

it seems to be the standard that the
industry is settling on.

354 Chapter 13

Web font browser support

The support for Web fonts across mod-
ern browsers is robust. Because earlier
browsers support only specific font for-
mats, working with these earlier browsers
requires a bit of extra leg work on the part
of the Web developer, but the reward for
your efforts is rich typography in all mod-
ern desktop browsers, even most mobile
smartphone browsers.

Legal issues

Fonts are, at a technical level, little pieces
of software. | know people who make
their living designing and building fonts,
and it’s a painstaking and detailed cre-
ative process that is not for the faint of
heart. For this reason, it’s understandable
that it might ruffle some feathers that the
@font-face feature even exists in the

first place. After all, if a browser can link

to and download a font, then that means
anybody can download and install that
font onto their computers, whether they’ve
purchased it or not. This is why we, as Web
designers and developers, must make

sure that any fonts we use in our Web sites
are properly licensed for use on the Web.
Most foundries and font services offer

this licensing as a part of the purchase of
a font or as an a la carte option. Alterna-
tively, you can restrict the fonts you use

to the free ones, such as those available

at Font Squirrel (www.fontsquirrel.com)

or The League of Moveable Type (www.
theleagueofmoveabletype.com). Either
way, make sure you’re solidly in the right
when it comes to using Web fonts in a
project. You can do this by taking a look

at the license for any fonts you purchase.
As this is a pretty hot topic these days,

this information is often mentioned on the
Web site of the foundry you are purchasing
from. When in doubt, contact the foundry
to see what is allowed.

If you have purchased a font, and you
know for sure that you can use it as a Web
font, one tool that might come in handy is
Font Squirrel’s free @font-face generator
(www.fontsquirrel.com/fontface/generator).
This tool converts your font to all the Web
font file types you will need for using it on
the Web.

Working with Web Fonts 355

www.fontsquirrel.com
www.theleagueofmoveabletype.com
www.theleagueofmoveabletype.com
www.fontsquirrel.com/fontface/generator

Where to Find
Web Fonts

You have two options for using Web fonts
in a Web site: self-hosting and Web font
services. Both are perfectly valid options;
however, they are quite different, with their
own pros and cons to consider. As you
weigh these pros and cons, you will also
find that not all Web fonts are available
everywhere. You may find that even though
you want to go with self-hosting, the font
you need is only available from a Web font
service. This may require finding a close
substitute or rethinking your approach. It
pays to be flexible and to weigh all your
options before you commit to a direction.

Self-hosting

Self-hosting a Web font is the more tradi-
tional approach and the one that we will
cover in the step-by-step portion of this
chapter. The fonts are served up from your
own server, much like any other asset
(such as an image or a CSS file). If there’s
a cost associated with the font, it’s usually
a one-time purchase, and it’s up to you to
upload the font files and include the code
on your site.

It's relatively easy to find Web fonts for self-
hosting, because there are plenty of them
out there. And they come in a wide range
of qualities and prices (some are even
free). Some of the more popular ones are

m Font Squirrel (www.fontsquirrel.com)
m MyFonts (http://myfonts.com)

m The League of Moveable Type (www.
theleagueofmoveabletype.com)

m FontShop (www.fontshop.com)

Web font services

Web font services typically offer a subscrip-
tion approach to Web fonts. Instead of
buying the fonts outright, you pay monthly
or annually for the rights to use the fonts.
These services host the fonts and give

you a small piece of code to put into your
Web pages. Depending on the service,

this code is JavaScript or CSS. It includes
all the necessary code for the font files to
be served up from a remote server and
displayed on your site. Many favor this
approach because it’s usually cheaper than
purchasing fonts individually and it lets you
try many different fonts.

A few of the more popular Web font ser-
vices are

m Typekit (https://typekit.com)
m Fontdeck (http://fontdeck.com)
m Fonts.com (www.fonts.com)
m WebINK (www.webink.com)

m Google Web Fonts (www.google.com/
webfonts)

By nature, Web font services are able

to offer more features than self-hosting.
Everything is hosted on the server, includ-
ing the font files. If better font files or
improved code for serving them become
available, the services can easily provide it.

Additionally, many of these services use
JavaScript to embed the code for serving
up Web fonts. This comes with some ben-
efits—and a few drawbacks too. JavaScript
can do a lot in this process, like detecting
which browser is loading the page and
giving added control over the loading of
the fonts themselves. This kind of control
can lead to a genuinely better experience,
because it lets Web font services custom-
ize the font formats and the code to serve
them up. For instance, Typekit recently

356 Chapter 13

http://fontdeck.com
www.fonts.com
www.webink.com
www.google.com/webfonts
www.google.com/webfonts
www.fontsquirrel.com
http://myfonts.com
www.theleagueofmoveabletype.com
www.theleagueofmoveabletype.com
www.fontshop.com
https://typekit.com

A TEST TQ SHOW WEB FONT RENDERING Internet Explorer &
HOW DO | Lo Windows XP

A TEST TO SHOW WEB FONT RENDERING. Chrome 15
HOW DO | LOOK? Mac 05 X

Q This screenshot composite shows the same
code rendered by Internet Explorer 6 (top) and
Chrome 15 (bottom). Notice that in Internet

Explorer, the letters are lighter and not as smooth.

announced that they are serving up some
of their display fonts using PostScript-
based outlines (just to Windows browsers)
to make the rendering smoother (http://
blog.typekit.com/2011/09/15/improved-
windows-rendering-for-more-typekit-fonts/).
This kind of thing just isn’t available without
JavaScript.

The cost of this luxury, of course, is that
you’re relying 100 percent on JavaScript. If
a user doesn’t have JavaScript enabled on
their browser, they will not be able to view
your Web fonts. Additionally, JavaScript
can affect the performance of a page. The
user will have to wait for the JavaScript to
load before any of the Web fonts load on
the page. These are things to keep in mind
as you decide how to bring Web fonts to
your site.

Web font quality and rendering

Unfortunately, not all Web fonts are created
equal. There can be noticeable differences
in how Web fonts look across Web brows-
ers. This is most apparent in some fonts
that just don’t look good in earlier versions
of Internet Explorer.

As you select your fonts, do your best to
vet potential Web font choices by examin-
ing how they will look in a variety of brows-
ers @). This has gotten easier because
many Web font companies are now
providing live examples of the Web fonts,
and some companies provide screenshots
of the fonts on a variety of browsers and
platforms.

If you are stuck doing these tests on your
own, try out the resource available from Web
Font Specimen (http://webfontspecimen.com).
It’s a tool that lets you see how your Web fonts
will look in a variety of contexts and sizes.

Working with Web Fonts 357

http://blog.typekit.com/2011/09/15/improved-windows-rendering-for-more-typekit-fonts/
http://blog.typekit.com/2011/09/15/improved-windows-rendering-for-more-typekit-fonts/
http://blog.typekit.com/2011/09/15/improved-windows-rendering-for-more-typekit-fonts/
http://webfontspecimen.com

Downloading Your
First Web Font

Downloading a free Web font is quick and
easy. We will be using Font Squirrel; they
even provide a demo.html file for you to
see how these fonts look in action.

In the next section, we will explore the
@font-face syntax and how to integrate
a few Web fonts in a page.

To download a Web font
from Font Squirrel:

1. Go to the @font-face Kits section of
Font Squirrel (www.fontsquirrel.com/
fontface), and select a font you want to
use. I've selected League Gothic.

2. Click the Get Kit link @, and your down-
load should immediately begin. The
download is a ZIP archive.

3. Once the download is finished, open
the archive, and you should have a
folder containing Web fonts, a CSS file,
and a demo.html file @.

League Gothic | 1 Font
View Font | View @ff Demo | Get Kit

League Gothic AaBhCc

Q If you want to browse a bit further before
downloading, feel free to click View Font to see

a bit more about any of the fonts, along with
download options. If you click View @ff Demo, you
can see a full sampling of the font rendered as a
Web font; this is a quick way to test how the font
renders in a few different browsers.

anon L League -Gothic-fontfacckit
7 ems, 53.5 GB available

Name &| Dare Modified Size
demo.html ‘festerday 5:38 PM 1 KB

M League Gothic-webfont.eot Dec 23, 2010 5:24 AM 43 KB

%5 League_Gothic-webfonyswg Dec 23, 2010 5:24 AM 52 KB

" League_Cothic-webfons.tf Dec 23, 2010 5:24 AM 41 KB

M League_Gothic-webfant.woff Dec 23, 2010 5:24 AM 23 KB

L 5IL Open Font License 1.1.txt Yesterday 10:41 AM 4 KB

I sryleshesress Yesterday 536 PM 508 bytes

0 The expanded ZIP archive of League Gothic.
As you can see, we have a demo.html file, four
Web fonts, a license, and a style sheet.

358 Chapter 13

www.fontsquirrel.com/fontface
www.fontsquirrel.com/fontface

Fwst T3 Oema

Font-face Demo for the League Gothic Font

s ™

0 Behold, the Web fonts rendering in all their
glory!

To view the selected fonts
in the demo.html file:

Open the demo.html file from the down-
loaded font in your browser @. (See “View-
ing Your Page in a Browser” in Chapter 2.)

This demo file shows that the Web font
does indeed work. This is very exciting!
Before you declare victory and call it a day,
we’ll explore more about how this works in
the next section.

Need some inspiration on which fonts
to choose for your next project? The team at
Typekit writes a wonderful blog with lots of
great information on Web fonts and on typog-
raphy in general. Try the “Sites we like” series
for starters (http://blog.typekit.com/category/
sites-we-like/).

Do you need to use any of these fonts to
mock something up in Photoshop? Install the
TrueType (.ttf) font that comes with the Web
font kit onto your computer. Once you install
it, you can use it just like any other font on
your computer.

Working with Web Fonts 359

http://blog.typekit.com/category/sites-we-like/
http://blog.typekit.com/category/sites-we-like/

Working with
@font-face

You have downloaded the Web font kit
and have tested the demo.html file in a
browser. Now it’s time to look under the
hood and see how this works. Let’s look at
the code for stylesheet.css .

As you can see, the style sheet is fairly
simple, with just one rule. Admittedly, that
one rule is a big onel!

The @font-face syntax is a bit different
from traditional CSS. For one, it doesn’t
appear to follow the traditional method of
a selector followed by property/value pairs
that you read about in the beginning of
Chapter 8. This rule starts with that odd-
looking @font-face declaration.

One way to wrap your head around how
@font-face works is to understand that
a @font-face rule is just setting up a tool
that can be used by the rest of your CSS.
This rule doesn’t affect the style of any
specific element, but it does provide for
the use of Web fonts for your CSS.

The first line in this rule is for the font family:
font-family: 'LeagueGothicRegular’;.

This establishes the name for this particu-
lar Web font. In this case, we are using
LeagueGothicRegular, but it can be what-
ever you choose. You could choose Banana
or The Best Font Ever. It’s up to you.

The next few lines in the rule are for tell-
ing the browser where the font files live.
These include the font file formats that
give support to all the different browsers
that support Web fonts. This syntax can
look a little scary, but for our purposes it's
not necessary to understand it completely.
If you do want to dig a little deeper and
find out why this looks the way it does,

| recommend one of Ethan Dunham’s

o This is the @font-face rule that Font Squirrel
provides in the kit. You may notice that it uses
single quotes instead of the double quotes shown
in CSS examples throughout the book. Single
quotes and double quotes work the same way in
CSS, so use whichever method you prefer.

@font-face {
font-family: 'LeagueGothicRegular';
src: url('League_Gothic-webfont.eot');
src: url('League_Gothic-webfont.eot?#iefix")
format('embedded-opentype'),
url('League_Gothic-webfont.woff")
format('woff'),
url('League_Gothic-webfont.ttf')
format('truetype'),
url('League_Gothic-webfont.
svgiLeagueGothicRegular')
format('svg');
font-weight: normal;
font-style: normal;

}

360 Chapter13

0 This is the CSS from the top of the demo.html
file. Font Squirrel puts it here for demonstration
purposes, but in practice, it's best to keep all your
CSS in an external style sheet.

hi.fontface {
font: 60px/68px 'LeagueGothicRegular’,
Arial, sans-serif;
letter-spacing: 0;

}
p.style1l {
font: 18px/27px 'LeagueGothicRegular’,
Arial, sans-serif;
}

posts on Fontspring (www.fontspring.com/
blog/further-hardening-of-the-bulletproof-

syntax), where he explains the latest think-
ing on @font-face syntax.

Incorporating Web fonts
into a Web page

We’ve covered the @font-face syntax,
but we haven’t actually put the Web fonts
onto a page yet. Look at the code for
demo.html, and let’s examine the CSS
code toward the top of the page ©.

The included rules style the HTML with the
League Gothic Web fonts. In the first rule,
60px/68px specifies the font size and line
height. Our example uses pixels for sizing,
but you are welcome to specify in other
units. The sizing is followed by specify-

ing 'LeagueGothicRegular', Arial,
sans-serif. As you learned in “Specifying
Alternate Fonts” in Chapter 10, when we
specify multiple font families separated by
commas like this, it is what'’s called a font
stack. If a browser doesn’t support the first
font in a stack, it tries the next one down
the line. Since we are using Web fonts
here, it's a pretty good chance that the
browser will just render the Web font; how-
ever, it’s still a good practice to use a font
stack. After all, not every browser supports
Web fonts.

In this CSS, the font property refers

to LeageGothicRegular, based on the
font-family name that was set in the
@font-face rule. What’s more, it refers to it
just as it would any other font. In the eyes
of the browser, League Gothic may as well
be installed on the computer that is visiting
the Web site.

Now that you have tasted success, per-
haps you want to try this with a few more
Web fonts?

Working with Web Fonts 361

www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax

For our next task, we will use League
Gothic for our main headline, and Crimson
for the rest of the text on the page.

To work with multiple Web fonts:

Head back to Font Squirrel, and download
the Crimson Web font kit, which includes
six different fonts @.

To use multiple Web fonts
in the same project:

1. There are a lot of fonts in the folder.
For our purposes, we only need a
few. Select the four Web font files for
Crimson-Roman-webfont, and copy
them over to the League Gothic folder
in which we were working before. The
results should look like @.

2. In stylesheet.css, type the following
rule:

@font-face {
font-family: "CrimsonRoman";

src: url("Crimson-Roman-
webfont.eot");

src: url("Crimson-Roman-
webfont.eot?#iefix")
format("embedded-opentype"),

url("Crimson-Roman-webfont.
woff") format("woff"),

url("Crimson-Roman-webfont.
ttf") format("truetype"),

url("Crimson-Roman-webfont.
svg#CrimsonRoman™)
format("svg");

}

This looks strikingly familiar, I'm sure.
Now our style sheet has rules for
League Gothic and Crimson Roman.
The next step is to add the selectors to
bring Crimson to the page.

Crimson | & Fonts
View Font | View @ff Demo | Get Kit

Crimson AaBbCcD

0 Just as you did before, click Get Kit to
download the ZIP archive of the Web font kit. Once
it has downloaded, expand the archive.

ann [League-Cothie-fantfacekit

Name Date Modified Size

M Crimson-Roman-webfont.eot Dec 23, 2010 12:11 AM 83kB
=L Crimson-Roman-webfont.svyg Dec 23, 2010 12:11 AM 122 KB
" Crimson-Aoman-webfont.tf Dec 23, 2010 1211 AM EIKB
B Crimson-Raman-webfont.wofl Dec 23, 2010 12:11 AM 47 KB
demo.html Yesterday 11:40 PM 1K8

M League_Gothic-weblont.eot Dec 23, 2010 6:24 AM 43 KB
== League_Cothic-webfont.svg Dec 23, 2010 6:24 AM 52 KB
League_Gothic-webfont.of Dec 23, 2010 6:24 AM 43 K8

B League_Gathic-webfontwolf Dec 23, 2010 6:24 AM 231 KB
! SIL Open Font License 1.1t Yeserday 11:43 PM 4KB
T stylesheet.cas Yesterday 11:49 PM 540 bytes

0 Now we have two Web fonts in the same folder.
Well done! (See the last tip regarding organizing
files.)

362 Chapter 13

3. After the @font-face rule you just
typed, type the following on a new line:

body {

font-family: "CrimsonRoman",
Georgia, serif;

}

4. On anew line, type the following rule to
style an ha:

ha {

font-family: "LeagueGothic
Regular"”, Arial, sans-serif;

font-size: 4em;
font-weight: normal;

}

Next, we will create a new HTML
document.

5. Inside the same folder, create a new
HTML file called demo2.html.

6. Type the following code into your
demo2.html page (notice how we are
linking to the stylesheet.css that we
were just editing):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />

<title>Our Awesome Web Font
Examples</title>

<link rel="stylesheet"
href="stylesheet.css" />

</head>
<body>
<article>

<hi>Headlines Are Very
Important</h1>

continues on next page

Working with Web Fonts 363

<p>There is more to Philadel
phia than cheesesteaks,
Rocky and the Liberty Bell.
Did you know that Phila
delphia used to be the
capital of the United States?
You will also find that
Philadelphia has our nation's
first Post Office, Hospital,
and free library. That Ben
jamin Franklin was one busy
fellow!</p>

</article>
</body>
</html>

7. Open demo2.html in a Web browser @
(see “Viewing Your Page in a Browser”
in Chapter 2). Your fonts should be
looking pretty good now.

We used the font family names that
came with the kit from Font Squirrel, such
as LeagueGothicRegular. That s a nice,
descriptive name, but another school of
thought is to use a more semantic naming

scheme, such as font-family: "Headline";.

One benefit to choosing this scheme is that

if you change your mind and decide to use a
different Web font (instead of League Gothic),
you only need to replace this @font-face rule
with your new one and give it the font family
name Headline.

Although the steps and examples
assume the font files, style sheet, and HTML
page are in the same directory, it’s good
practice to organize them in folders (see
“Organizing Files” in Chapter 2). Just make
sure to change the paths to your style sheet in
the HTML and to the Web fonts in the CSS, as
necessary (see “URLs” in Chapter 1).

800 Our Awesome Web Font Examples

Our Awesome Web Font Dxamples | 4 |

Headlines Are Very Important

There is more to Philadelphia than cheesesteaks, Rocky and the Liberty Bell. Did
you know that Philadelphia used to be the capital of the United States? You will
also find that Philadelphia has our nation's first Post Office, Hospital, and free

library, That Benjamin Franklin was one busy fellow!

G The headline uses League Gothic, and the rest
of the page is rendered with Crimson.

364 Chapter 13

Styling Web Fonts and
Managing File Size

Web fonts are a bit more complicated than
working with regular fonts, so there are a
few things you might want to watch out for
when working with them.

One potential risk with Web fonts, espe-
cially when using more than one or two of
them, is that they can start to weigh down
the page. I'm not talking about bacon and
doughnuts here—I'm talking about kilo-
bytes and megabytes.

All of those fonts need to be downloaded
to the user’s computer before they can be
rendered on the page. If you have half a
dozen fonts on a page, this can slow down
the Web site, especially for mobile users.
My recommendation to you is to be pru-
dent with your Web font choices. If you find
yourself using seven Web fonts, then look
for ways to consolidate your font choices.

One way to save some page weight is
through subsetting. Subsetting is a way

to trim down the size of the actual font by
only including the characters you know
you will use. For instance, if you are using
League Gothic for headlines, but the
design of the site requires that the head-
lines are always in all caps, then there is no
need for lowercase letters. Using subset-
ting, you can remove those letters from the
font, and the font’s file size will be measur-
ably smaller.

Working with Web Fonts 365

Additionally, you can select language-
specific subsets for many fonts. If you
are browsing the fonts at Font Squirrel,
just click View Font instead of Get Kit for
a particular font. From that font’s page,
choose @font-face Kit to see the lan-
guage-specific options before download-
ing the kit. Explaining the nuts and bolts
of subsetting is beyond the scope of this
book, but Font Squirrel does have a tool
that helps you do expert-level subsetting
(www.fontsquirrel.com/fontface/generator).

Another situation in which Web fonts can
act a little strangely is when you want to
do what seems like the most basic styling
of them. The thing to keep in mind is that
Web fonts come in only one weight and
one style per font. If you want to use bold
or italic, you need to create separate rules
for them, each with its own Web font file.

To add italic and bold:

1. Update the first paragraph of the
demo2.html file with the following high-
lighted code:

<p>There is more to Philadelphia
than cheesesteaks, Rocky and
the Liberty Bell. Did you
know that Philadelphia
used to be the capital of the
United States? You will also
find that Philadelphia has
our nation's first Post Office,
Hospital, and free library.
That Benjamin Franklin was one
busy fellow!</p>

366 Chapter 13

www.fontsquirrel.com/fontface/generator

This is fake italic. It is not real.

This is not fake italic. It is real.

0 Which one is the fake? Take note of the

lowercase “k”, “a,” and “f”

Ao L League-Cathic
Name -
M Crimson-Bold-webfont.eot
= Crimson-Bold-webfont. svg
" Crimson-Bold-webfont.uf
B Crimson-Bold -webfont.wofl
B Crimson-ialic-webfont.eot
T Crimson-imalic-webfontavg
" Crimson-ialic-webfor.of
M Crimson-Ralic-webfont.woll
B crimson-Roman-webfont.eat
T Crimson-Roman-webfont.svy
" Crimson-Roman-weblont.of
M Crimson-Roman-webfont.wol
demo.html
demo2 tami
B League_Gothic-weblont.eat
=i League_Cothic-webfont.svg
" League_Gothic-webfont.trf
B Lrague_Cothic-weblont wolf
S Open Font License 1.1.txt
L stylesheet.cis

-~fantfacekit

Date Modified

Dec 23, 2010 12112 AM
Dec 23, 2010 12:12 AM
Dec 23, 2010 12:12 AM
Dee 23, 2010 1212 AM
Dec 23, 2010 12:10 AM
Dec 23, 2010 12:10 AM
Dec 23, 2010 12:10 AM
Dec 23, 2010 12:10 AM
Dec 23, 2010 12:11 AM
Dec 23, 2010 12111 AM
Dec 23, 2010 12111 AM
Dec 23, 2010 12:11 AM
Yesterday 11:49 PM
Today 12:50 AM

Dec 23, 2010 6:24 AM
Dec 23, 2010 6:24 AM
Dec 23, 2010 6:24 AM
Dec 23, 2010 6:24 AM
Yesterday 1149 PM
Today 1:08 AM

Size
BL KB
122 KB
B1 KB
45 KB
B4 KB
122 K8
B4 KB
46 KB
B3KB
122 KB
Bl KB
47 KB

1KB

587 bytes
43 K8
S2KB
43 KB
21KB

4 KB

1KB

0 My, it’s getting a bit crowded in here! The new
bold and italic files for Crimson should be right at
home next to the roman files. (See the last tip.)

2.

w

Refresh your Web browser.

It appears that there are bold and italic
right there in the paragraph. However,
not everything is quite as it seems. In
fact, the Web font for Crimson Roman
doesn’t have bold and italic built in, and
the browser is faking the bold and italic
by making the regular text a little fatter
for the bold and a bit more slanted for
the italic.

The fake effect is noticeable, even for
the average viewer 0. What we want it
to do is to use the proper bold and italic
that were designed for the font. Great
news—this is actually pretty easy!

To use the proper bold and italic for
Crimson, we must get those Web font
files and copy them over to this folder,
just as we did in the section “To use
multiple Web fonts in the same project.”

Locate the Crimson-Bold and Crimson-
Italic Web font files and copy all the
formats of each (eight files total) over to
the demo project folder @.

Next, just as before, we need to add
some new @font-face rules to bring in
the bold and italic files.

continues on next page

Working with Web Fonts 367

4. Type the following into stylesheet.css:
@font-face {
font-family: "CrimsonBold";

src: url("Crimson-Bold-webfont.
eot");

src: url("Crimson-Bold-webfont
.eot?#iefix") format(
"embedded-opentype"),

url("Crimson-Bold-webfont.
woff") format("woff"),

url("Crimson-Bold-webfont.
ttf") format("truetype"),

url("Crimson-Bold-
webfont.svg#CrimsonBold")
format("svg");

@font-face {
font-family: "CrimsonItalic";
src: url("Crimson-Italic-

webfont.eot");

src: url("Crimson-Italic-
webfont.eot?#iefix")
format("embedded-opentype"),

url("Crimson-Italic-webfont.
woff") format("woff"),

url("Crimson-Italic-webfont.
ttf") format("truetype"),

url("Crimson-Italic-webfont.
svg#CrimsonItalic")
format("svg");

368 Chapter 13

enn O Awesome Web Font Examples

Our Awesome Web Font Dxamples | 4 |

Headlines Are Very Important

There is more to Philadelphia than cheesesteaks, Rocky and the Liberty Bell. Did
you know that Philadelphia used to be the capital of the United States? You will
also find that Philadelphia has our nation's first Post Office, Hospital, and free
library. That Benjamin Franklin was one busy fellow!

G Multiple Web fonts, all styled properly.

5. Add the following rules to
stylesheet.css:

b {
font-family:"CrimsonBold",
Georgia, serif;

font-weight: normal;

}
em {
font-family:"CrimsonItalic”,
Georgia, serif;
font-style: normal;
}

The first rule styles the b element, giv-
ing it the font family of Crimson Bold,
and setting the font weight to normal. If
you forget to set font-style to normal,
and you leave the font weight as is,
then the browser will try to make the
bold bolder, which just makes things
worse! You handle the em element in
the same way—changing the font family
and also setting font-style to normal.

That should do it.

6. Take alook at demo2.html in your
Web browser to see the proper italic
and bold @.

You can apply bold and italic formatting
with a Web font to any element containing
text, not just those shown in the examples and
steps. As always, choose the HTML element
that best describes your content, and style it
as desired.

Remember that each style and weight
that requires a new font file adds to the file
size that the browser needs to download. This
can affect performance. For this reason, many
designers choose to use Web fonts only for
headlines.

continues on next page

Working with Web Fonts 369

There is a somewhat cleaner approach
to writing the @font-face code that lets you
have the extra variations in weight without
having to write extra rules for b, em, or which-
ever elements you wish to style as bold or
italic. However, it comes with some extra risks
and isn’t as compatible with Internet Explorer.
To learn how to do it, check out this blog post
by Roger Johansson: www.456bereastreet.
com/archive/201012/font-face_tip_define_
font-weight_and_font-style_to_keep_your_
css_simple/.

If you use Typekit or other Web font
services that use JavaScript, check how they
apply font styles, because they may have their
own way to write the selectors for styling.

Although the steps and examples
assume the font files, style sheet, and HTML
page are in the same directory (:), it’s good
practice to organize them in folders (see
“Organizing Files” in Chapter 2). Just make
sure to change the paths to your style sheet in
the HTML and to the Web fonts in the CSS, as
necessary (see “URLs” in Chapter 1).

370 Chapter 13

www.456bereastreet.com/archive/201012/font-face_tip_define_font-weight_and_font-style_to_keep_your_css_simple/
www.456bereastreet.com/archive/201012/font-face_tip_define_font-weight_and_font-style_to_keep_your_css_simple/
www.456bereastreet.com/archive/201012/font-face_tip_define_font-weight_and_font-style_to_keep_your_css_simple/
www.456bereastreet.com/archive/201012/font-face_tip_define_font-weight_and_font-style_to_keep_your_css_simple/

-nhancements

with CSS3

One of the challenges faced by Web site

authors over the years has been the lim- In ThiS Chapter

ited number of options for producing rich

layouts using CSS. In most cases, it meant Understanding Vendor Prefixes 373
using additional HTML and CSS and a lot of A Quick Look at Browser Compatibility 375

images. Combined, this resulted in pages

Using Polyfills for Progressive
that were more complicated, were less g Polyfi &

. Enhancement 376
accessible, took longer to download and
display in the browser, and were simply Rounding the Corners of Elements 378
more fragile and difficult to maintain. Adding Drop Shadows to Text 382
Browsers’ rapid adoption of many new Adding Drop Shadows to Other
CSS3 properties in recent years has Elements 384
changed things for the better. Today, Applving Multiole Back q 388
it's possible to create rounded corners, pplying Multiple Backgrounds
gradients, and drop shadows; adjust Using Gradient Backgrounds 390
transparency; and more by using only Setting the Opacity of Elements 394

CSS, resulting in Web pages that use less
markup and fewer images. Perhaps most
importantly, these pages download and
display faster on less powerful devices
such as smartphones as well as on desk-
top and laptop computers.

As CSS continues to evolve, the challenge
that remains is that not all new CSS proper-
ties receive exactly the same level of sup-
port across browsers.

In this chapter, I'll look at several popular
and useful CSS3 properties for rounding
corners, creating shadows and gradients,
using multiple backgrounds on a single
element, and adjusting transparency. I'll
also show you how browser makers and
enterprising Web professionals are using
the philosophy of progressive enhance-
ment to bridge the gaps between browsers
through vendor prefixes and JavaScript-
based polyfills.

The code examples shown in this chapter
are available on the book’s site at www.
bruceontheloose.com/htmlicss/examples/.
The site also includes an extra example
that combines the CSS3 effects discussed
in this chapter.

372 Chapter 14

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

o An example of the border-radius property,
which requires using vendor prefixes (as in the first
two declarations shown) to support older versions
of Firefox and of Webkit-based browsers such as
Chrome and Safari. The latest versions of those
browsers no longer use the prefixed property and
instead use the non-prefixed property (that is,
simply border-radius: 10px;). As always, the last
competing declaration in a rule takes precedence,
which is why the non-prefixed version should

be last.

div {
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
border-radius: 10px;

Understanding
Vendor Prefixes

Although much of what falls under the
umbrella of CSS3 has not yet reached the
W3C’s Candidate Recommendation stage
(which would mean that the specifications
are complete), many parts have already
been implemented in recent versions of
Firefox, Internet Explorer, Chrome, Safari,
and Opera.

In order to future-proof unfinished (and
occasionally competing) CSS implemen-
tations that are subject to change, those
that require it have been implemented in
browsers using what are called vendor pre-
fixes. These allow each browser to intro-
duce its own support for a property without
conflicting with the final specification or
with other browsers. Additionally, vendor
prefixes provide a way to ensure that, once
a specification has matured or been final-
ized, existing Web sites using the experi-
mental implementations do not break.

Each of the major browsers has its own
prefix: -webkit- (Webkit/Safari/Chrome),
-moz- (Firefox), -ms- (Internet Explorer), -o-
(Opera), and -khtml- (Konqueror). They
are used, as you might guess, by placing
the prefix before the CSS property name,
but you should keep in mind that you don’t
need all the prefixes all the time. In most
cases, you'll only need the -moz- and
-webkit- prefixes, as you'll see throughout
the examples in this chapter. To future-
proof your work, it's recommended that
you include a non-prefixed version as the
last declaration @.

In practice, and as you’ll see throughout
this chapter, this means less HTML but
more CSS to achieve a desired effect.

Enhancements with CSS3 373

While vendor prefixes often add a consid-
erable amount of repetition in your CSS,
it's a small price to pay for progress—and
one that Web professionals have largely
accepted, if only because they’ve found
ways to automate the tedious work of add-
ing prefixed properties to their code (see
the last tip) ©.

Not all CSS3 properties, such as text-
shadow and opacity, require the use of
prefixes for any browser (see “Adding Drop
Shadows to Text” and “Setting the Opacity of
Elements,” respectively). In addition, not all
browsers require the use of a specific prefix
for a property.

If a property’s syntax changes before
being finalized, you can include multiple ver-
sions in your CSS. You can find examples of
this in this chapter’s demonstrations of the
border-radius and gradient properties
(see “Rounding the Corners of Elements” and
“Using Gradient Backgrounds,” respectively).
Each browser will interpret only the specific
syntax it understands, ignoring the rest.

Although there is no defined order in
which you should include prefixed properties,
always include a non-prefixed version of the
property last in order to future-proof your work

. This will ensure that nothing breaks once
browsers begin to support the non-prefixed
properties.

Services such as the CSS3 Generator
(www.css3generator.com) can make short
work of creating these properties, saving you
time and a lot of typing. See www.bruceon
theloose.com/tools/ for a list of other tools
that generate code for you.

& frpo— +

CSS3 Generator

Barder Radius

Preview Area

0 The CSS3 Generator (www.css3generator.com)
can be a beneficial learning tool while also
removing the repetitious work of writing prefixed
and non-prefixed CSS properties for browsers that
support them.

374 Chapter 14

www.css3generator.com
www.css3generator.com
www.bruceontheloose.com/tools/
www.bruceontheloose.com/tools/

@l clelelo| AQuickLookat

B C tibilit
border-radius 1.0 9.0 1.0 3.0 10.3 rowser ompa I I I y
boxshadow | 3.5 9.0 10 30 105 Because the pace at which browsers are
evolving has increased significantly in
text-shadow 3.0 10.0 1.0 1.1 10.0 s
recent years, it's important to understand
multiple backgrounds 3.6 9.0 1.0 1.3 10.0 when you can eXpeCt reliable Support
grodients | 3.6 10.0 20 40 111 for these new CSS properties. Here’s a
oy | 10 00 o 20 100 snapshot of when browsers began provid-
ing basic support for each of the properties
o This table illustrates when browser support covered in this chapter Q

was first introduced for each of the CSS properties
discussed in this chapter. For a more detailed
breakdown, look up each property at www.
caniuse.com or www.findmebyip.com/litmus/.

Enhancements with CSS3 375

www.caniuse.com
www.caniuse.com
www.findmebyip.com/litmus/

Using Polyfills
for Progressive
Enhancement

A commonly accepted approach to creat-
ing Web sites today is based on what is
known as progressive enhancement,
which emphasizes creating content and
functionality that is accessible to all users
at a basic level regardless of Web browser
while providing more capable browsers
an enhanced experience. In simpler terms,
progressive enhancement means that

it's perfectly acceptable for Web sites to
look and behave differently in different
Web browsers as long as the content is
accessible.

An example of this in practice is the
Dribbble site (http://dribbble.com) @,
which uses CSS3 to provide a richer expe-
rience for more modern browsers through
progressive enhancement. Older browsers,
such as Internet Explorer 8 @, are pre-
sented a slightly different visual experience
with no loss of functionality.

There may be times when you want to
bridge the limits of a less-capable browser
with the capabilities of another by using
polyfills (or shims, as they’re often called).

Typically implemented using JavaScript,
polyfills enable a degree of support for
HTML5 and CSS3 APIs and properties in
less-capable browsers while silently falling
back to official support when the capabili-
ties exist natively in a browser. It’s impor-
tant to note that these generally incur a
performance penalty, because JavaScript
is measurably slower in less-capable Web
browsers (particularly in older versions of
Internet Explorer).

R e wanar e 'IM" f‘\li ; F iy

Q The Dribbble site uses several CSS3
properties, such as border-radius and CSS3
gradient backgrounds, to provide a richer
experience for users with more-modern browsers,
but it is built with less-capable browsers in mind.

Yaan e magOOED

0 When viewed in older browsers (such as
Internet Explorer 8) that do not support border-
radius, the experience changes. Rounded
corners, such as those in the pill-shaped
navigation buttons, are simply squared off with no
loss of functionality. Everything still works. This is
one aspect of progressive enhancement in action.

376 Chapter 14

http://dribbble.com

G Modernizr is a JavaScript library that allows
you to detect whether a browser supports specific
HTML5, CSS3, and other features to create Web
site experiences that are optimized based on
available capabilities.

HTMLS Cross Browser Polyfills g

0 You can find a growing list of JavaScript
polyfills to bridge HTML5 and CSS3 features in
older browsers that do not support them natively.

You can find out more about progressive
enhancement, the many types of polyfills,
and responsibly bridging the gap between
older browsers and new Web technologies
on the site for Modernizr (www.modernizr.
com), a JavaScript library @. Faruk Ates
created Modernizr in 2009, and now Paul
Irish, Alex Sexton, and Ryan Seddon are
part of the team. See the tips for more
about Modernizr.

Today, Web browsers include functional-
ity that either encourages users to download
updated versions periodically (as Firefox,
Safari, and Internet Explorer do) or down-
loads updates silently in the background (as
Chrome does).

JavaScript-based tools such as Mod-
ernizr assist by providing clues when (among
other things) new or experimental CSS is avail-
able in a browser, allowing you to use CSS and
JavaScript to progressively enhance pages
and create a richer experience for more-capa-
ble browsers without leaving others behind.

You can find a community-managed

list of useful JavaScript polyfills at GitHub
(https://github.com/Modernizr/Modernizr/wiki/
HTML5-Cross-Browser-Polyfills) 0, as part
of the Modernizr project. The ones listed in
the “CSS3 Styles” section will be of particu-
lar interest, especially Jason Johnston’s PIE
(www.css3pie.com), which provides support
to Internet Explorer 6-9 for many of the CSS3
effects discussed in this chapter (of them, IE9
requires PIE to display linear gradients only;

it has native support for the others). Be aware
that using PIE may affect your site’s perfor-
mance in these older browsers.

Enhancements with CSS3 377

www.modernizr.com
www.modernizr.com
www.css3pie.com
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Rounding the Corners
of Elements

Using CSS3, you can round the corners of
most elements, including form elements,
images, and even paragraphs of text, with-
out needing additional markup or images
(@ and ©). Like the margin and padding
properties, the border-radius property
has both long- and short-form syntaxes.
Refer to @ for some basic examples
showing different ways you can use the
border-radius property.

To round all corners of
an element equally:

1. Type -moz-border-radius: r, where
r is the radius value of the corners,
expressed as a length (with units) @.

2. Type -webkit-border-radius: r,
where r is the radius value of the cor-
ners, using the same value from step 1.

3. Type border-radius: r, where r is
the radius value of the corners, using
the same value from step 1. This is the
standard short-form property syntax.

0 This document contains example divs with
class attributes. Each is used to illustrate a
different use of border-radius and the different
syntaxes for setting all corners equally, for setting
a single corner individually using the long-form
syntax, for creating an elliptical corner, and for
shapes such as circles.

<body>

<div class="all-corners"></div>

<div class="one-corner"»</div>

<div class="elliptical-corners"></div>
<div class="circle"»</div>

</body>

</html>

ann Reunded Cnmers
i 0 Rounded Corners

0 Browsers that support the border-radius
property with or without vendor prefixes should
render the examples similarly to these. Note
that there are subtle visual differences between
implementations, particularly in older versions of
Safari and Firefox.

378 Chapter 14

G The CSS for the four border-radius examples,
including the vendor-prefixed properties necessary
to support older versions of Firefox and Safari.
Note that Opera 10.5 and Internet Explorer 9 do
not require a prefixed property. Refer to for
more information.

div {
background: #999;
float: left;
height: 150px;
margin: 10px;
width: 150px;

}

.all-corners {
border-radius: 20px;
}

.one-corner {
-moz-border-radius-topleft: 75px;
-webkit-border-top-left-radius: 75px;
border-top-left-radius: 75px;

}

.elliptical-corners {
-moz-border-radius: 40px / 20px;
-webkit-border-radius: 40px / 20px;
border-radius: 40px / 20px;

}

.circle {
-moz-border-radius: 75px;
-webkit-border-radius: 75px;
border-radius: 75px;

}

To round one corner of an element:

1. Type -moz-border-radius-topleft: r,
where r is the radius value of the top-
left corner, expressed as a length (with
units). This is the older, non-standard
syntax used by versions of Firefox prior
to 4.0 (see the second-to-last tip). You
may skip this step if you don’t mind that
these older versions will display square
corners

2. Type -webkit-border-top-left-
radius: r, where r is the same value as
in step 1.

3. Type border-top-left-radius: r,
where r is the radius value of the top-
left corner, expressed as a length (with
units). This is the standard long-form
property syntax.

Note that these steps describe how to
style the top-left corner only, but you can
style the other corners individually too.
Here’s how:

= To round the top-right corner: Replace
top-left in steps 2 and 3 with top-
right. Optionally, replace topleft in
step 1 with topright.

m To round the bottom-right corner:
Replace top-left in steps 2 and 3
with bottom-right. Optionally, replace
topleft in step 1 with bottomright.

m To round the bottom-left corner:
Replace top-left in steps 2 and 3
with bottom-left. Optionally, replace
topleft in step 1 with bottomleft.

Enhancements with CSS3 379

To create elliptical corners:

1. Type -moz-border-radius: x / y,
where x is the horizontal radius value of
the corners and y is the vertical radius
value of the corners, expressed as a
length (with units) (9. The values should
be separated by a forward slash.

To create a circle using
border-radius:

1. Type -moz-border-radius: r, where r
is the radius value of the element (with
length units). To create a circle, you can
use the short-form syntax, and the value
of r should be half the height or width
of the element

2. Type -webkit-border-radius: r,
where r is the radius value of the ele-
ment (with length units). This adds sup-
port for older versions of Webkit-based
browsers such as Chrome and Safari.

3. Type border-radius: r, where r is the
radius value of the element (with length
units). This is the standard non-prefixed
syntax.

Older browsers that don’t support
bordexr-radius will simply render the ele-
ment with square corners.

Like the CSS border, margin, and
padding properties, border-radius can be
specified using either a long- or short-form
style, depending on whether you need to
specify different values for each corner.

Firefox -moz-border-radius-topleft
Firefox 3.6 -moz-border-radius-topright
-moz-border-radius-bottomleft

-moz-border-radius-bottomright

Webkit -webkit-border-top-left-radius
Safari 3 and 4 -webkit-border-top-right-radius
Chrome 3 -webkit-border-bottom-left-radius

-webkit-border-bottom-right-radius

Standard CSS3

border-top-left-radius

Syntax border-top-right-radius
Firefox 4 border-bottom-left-radius
Chrome 4 border-bottom-right-radius
Safari 5

Internet Explorer 10

Opera 10.5

0 The different long-form border-radius
syntaxes required to support Firefox 3.6 and
Webkit (Safari/Chrome), along with the official
unprefixed syntax used by the most recently
released browser versions.

380 Chapter 14

G These examples show just a few ways you
can specify the border-radius values—either
using a pair of values or by specifying all four
corners individually. Using the short-form syntax
also removes the need to worry about the more
complex long-form syntax, particularly if you need
to support versions of Firefox prior to 4.0.

div {

/* Makes the radius of the top-left and
bottom-right corners 5px and the top-
right and bottom-left corners 10px */

border-radius: 5px 10px;

}

div {

/* Makes the radius of the top-left
corner 5px, the top-right corner 10px,
the bottom-right corner 0, and the
bottom-left corner 20px */

border-radius: 5px 10px 0 20px;

}

div {

/* Makes the radius of the top-left
corner 20px, the top-right corner o,
the bottom-right corner o, and the
bottom-left corner o */

border-radius: 20px 0 0 0;

}

div {
/* Makes the radius of the top-left
corner 30px */
-moz-border-radius-topleft: 30px;
-webkit-border-top-left-radius: 30px;
border-top-left-radius: 30px;

If you want to round all four corners of an
element by the same radius value, you can use
the simpler border-radius shorthand syntax,
just as you would for setting basic border style
properties . For example, border-radius:
12px; gives all four corners of an element a
radius of 12 pixels.

The border-radius property is not
inherited.

Although it’s possible to specify the
radius of a rounded corner using percentages,
this is generally not recommended, because
some browsers may treat this inconsistently
based on the calculated dimensions of an
element.

When border-radius support

was added to Firefox and Safari, Firefox
initially used a non-standard, long-form
syntax (-moz-border-radius-topleft,
-moz-border-radius-topright,
-moz-border-radius-bottomleft,
-moz-border-radius-bottomright) for
specifying the property for individual corners
of an element Q, but as of Firefox 4.0 it has
followed the recommended syntax (bordex-
top-left-radius, border-top-right-
radius, border-bottom-left-radius,
border-bottom-right-radius). The most
recent versions of all browsers now support
the non-prefixed border-radius property.

If writing CSS for border-radius seems
confusing or tedious, don’t worry. Web-based
services such as the CSS3 Generator (www.
css3generator.com) by Randy Jensen can help
make short work of creating rounded corners
and save you a lot of typing. You enter radius
values, and it displays the results on a sample
element so you can see if it’s the effect you
want. Better yet, it writes all the CSS for you,
which you can copy and paste into your style
sheet. It does the same for other CSS3 proper-
ties. Much easier!

Enhancements with CSS3 381

www.css3generator.com
www.css3generator.com

Adding Drop
Shadows to Text

Iriginally included as part of the CSS2
specification, removed in CSS2.1, and later
resurrected in CSS3, the text-shadow
property allows you to add dynamic drop-
shadow effects to text in elements such as
paragraphs, headings (@) through @), and
more without first needing to render the
text using an image.

To add a drop shadow to
an element’s text:

1. Inthe CSS, type text-shadow:.

2. Type the four values for x-offset,
y-offset, color, and blur radius
(with length units) without commas
separating them; for example, 2px 2px
5px #999. (See the tips for more about
what values are allowed.)

3. Type ; (a semicolon).

To add multiple drop shadow
styles to an element’s text:
1. Inthe CSS, type text-shadow:.

2. Type the four values for x-offset,
y-offset, color, and blur radius
(with length units) without commas
separating them. (See the tips for
more about what values are allowed.)

3. Type, (a comma).

4. Repeat step 2 using different values for
each of the four properties.

5. Type ; (a semicolon).

o Two example implementations that
demonstrate the use of text-shadow.

<body>

<h1>Text Shadow</h1>

<h1 class="multiple">Multiple Text Shadows
</h1>

</body>
</html>
ann Example: Text Shadows
J' [Example: Text Shadows L+l =

Text Shadow

Multiple Text
Shadows

0 What the two examples should look like when
displayed in a browser that supports the text-
shadow property.

382 Chapter 14

G It's possible to add more than one drop
shadow to a single element by separating the
sets of property values with a comma, as shown
applied to the .multiple class selector. This
allows you to combine drop shadows to create
unique and interesting effects.

h1 {

font-family: Helvetica, Arial,
sans-serif;

font-size: 72px;

line-height: 1em;

text-shadow: 2px 2px 5px #999;

}
.multiple {
text-shadow: 2px 2px 0 rgba(255,255,
255,1), 6px 6px 0 rgba(50,50,50,.25);
}

To reset text-shadow back
to its default value:

1. Inthe CSS, type text-shadow:.
2. Type none.

3. Type ; (a semicolon).

Vendor prefixes are not needed for the
text-shadow property.

Although the syntax may appear similar,
it’s not possible to individually specify the four
property values for text-shadow as you can
for borders and backgrounds.

The initial property value is none if not
set.

The text-shadow property is inherited.

The property accepts four values:
x-offset with length units, y-offset with
length units, an optional blur radius with
length units, and finally a color value. If you
do not specify the blur radius, it is assumed to
be zero.

The x-offset and y-offset values can
be positive or negative integers; that is, both
1px and -1px are valid. The blur radius
value must be a positive integer. All three
values can also be zero.

Color can be specified using hex, RGB,
RGBA, or HSLA values (see “CSS colors” in
Chapter 7) and can be placed first or last in the
order of property values.

It's possible to achieve advanced effects
by applying multiple shadows to a single
element. To do so, separate the individual
shadow properties with a comma; for example,
text-shadow: 2px 2px 0 #999, 6px 6px O
rgba(50,50,50,.25); (9. The shadows are
stacked in reverse order, with the first being
the topmost and any subsequent shadows
stacking one after another below.

Enhancements with CSS3 383

Adding Drop Shadows
to Other Elements

The text-shadow property allows you to
apply shadows to an element’s text, but
the box-shadow property allows you to

add shadows to the elements themselves
(@ and @). Although based on the same
basic set of attributes, box-shadow allows
two more optional attributes—the inset
keyword attribute, and the spread attribute
to expand or shrink the shadow.

The box-shadow property also differs from
its text-shadow counterpart in that it is
less widely supported and requires vendor
prefixes for some browser versions.

Although you’ll most often use only

four, the box-shadow property accepts

six values: x-offset and y-offset with
length units, an optional inset keyword,
an optional blur-radius with length units,
an optional spread value with length units,
and a color value. If you do not specify the
blur-radius or spread values, they are
assumed to be zero.

o This document contains three divs that
demonstrate using box-shadow to add one or more
shadows.

<body>

<div class="shadow">
<h1>Single Shadow</h1>
</div>

<div class="inset-shadow">
<h1>Inset Shadow</h1>
</div>

<div class="multiple">
<h1>Multiple Shadows</h1>
</div>

</body>

</html>

ann Bax Shadows

| [Box Shadows = =

0 What the three examples should look like when
displayed in browsers that support the box-shadow
property.

384 Chapter 14

G The CSS used to create the three examples.

Note the two additional vendor-prefixed properties

required to ensure that it displays correctly in

older Firefox and Webkit browsers. Browsers that

don’t understand box-shadow will simply ignore

those CSS rules, and pages will render without the

shadows.

div {
background: fff;
float: left;
height: 150px;
margin: 10px;
width: 150px;

}

.shadow {
background: #ccc;
-moz-box-shadow: 2px 2px 5px #000;
-webkit-box-shadow: 2px 2px 5px #000;
box-shadow: 2px 2px 5px #000;

}

.inset-shadow {
-moz-box-shadow: inset 2px 2px 10px
#000;
-webkit-box-shadow: inset 2px 2px
10px #000;
box-shadow: inset 2px 2px 10px #000;

}

.multiple {

-moz-box-shadow: 2px 2px 10px
rgba(0,255,0,.75), 5px 5px 20px
rgba(125,0,0,.5);

-webkit-box-shadow: 2px 2px 10px
rgba(0,255,0,.75), 5px 5px 20px
rgba(125,0,0,.5);

box-shadow: 2px 2px 10px
rgba(0,255,0,.75), 5px 5px 20px
rgba(125,0,0,.5);

To add a drop shadow to an element:

1.
2.

In the CSS, type -moz-box-shadow:.

Type the values for x-offset,
y-offset, blur-radius (all with length
units), and color @.

Type -webkit-box-shadow: and repeat
step 2.

Type box-shadow: and repeat step 2
again.

To create an inset shadow:

1.
2.

3.

In the CSS, type -moz-box-shadow:.

Type inset after the colon, followed by
a space.

Type the values for x-offset,
y-offset, blur-radius (all with length
units), and color; for example, 2px 2px
5px #000.

Type -webkit-box-shadow: and repeat
steps 2 and 3.

Type box-shadow: and repeat steps 2
and 3 again.

Enhancements with CSS3 385

To apply multiple shadows
to an element:

1

2.

In the CSS, type -moz-box-shadow:.

Type the values for x-offset,
y-offset, blur-radius (all with length
units), and color; for example, 2px 2px
5px #000.

Type , (a comma).

Repeat step 2 using different values for
each of the properties

Type -webkit-box-shadow: and repeat
steps 2 through 4.

Type box-shadow: and repeat steps 2
through 4 again.

To reset box-shadow back
to its default value:

1.

In the CSS, type -moz-box-shadow:
none.

Type -webkit-box-shadow: none.

Type box-shadow: none.

386 Chapter 14

Firefox 3.5 and 3.6 require the -moz-
vendor prefix for the box-shadow property,
and some older versions of the Webkit-based
browsers such as Safari and Chrome require
the -webkit- prefix. Opera 10.5 and Internet
Explorer 9 support the box-shadow property,
so they do not require a vendor prefix. You
can find detailed information on when vendor
prefixes are needed for box-shadow at http://
css3please.com.

The initial property value is none if
not set.

The box-shadow property is not
inherited.

Color can be specified using hex, RGB,
RGBA, or HSLA values (see “CSS colors” in
Chapter 7) and can be placed first or last in the
order of property values.

The x- and y-offset values can be
positive or negative integers; that is, both 1px
and -1px are valid. The blur radius value
must be a positive integer. The values for each
of these three attributes can also be zero.

It's possible to achieve advanced effects
by applying multiple shadows to a single
element. To do so, separate the individual
shadow properties with a comma; for example,
box-shadow: 2px 2px 0 #999, 6px 6px O
rgba(50,50,50,.25); (9. The shadows are
stacked in reverse order, with the first being
the topmost and any subsequent shadows
stacking one after another below.

It's possible to create drop shadows in
older versions of Internet Explorer by using
the proprietary filter and -ms-filtex prop-
erties, but this also requires additional HTML
markup and CSS rules to resolve the issues
created by using the filter.

Enhancements with CSS3 387

http://css3please.com
http://css3please.com

Applying Multiple
Backgrounds

One of the most sought-after features in
CSS has been the ability to specify multiple
backgrounds on a single HTML element
(@ and @). This simplifies your HTML code
by reducing the need for elements whose
sole purpose is to attach additional images
using CSS, making it easier to understand
and maintain. Multiple backgrounds can be
applied to just about any element.

To apply multiple background
images to a single element:

1. Type background-color: b, where b
is the color you want applied as the
fallback background for the element @.

2. Type background-image: u, where u is
a comma-separated list of absolute or
relative path image references.

3. Type background-position: p, where
p is a comma-separated set of positive
or negative x- and y-offset pairs with
length units. There should be one set
of coordinates for each background
image.

4. Type background-repeat: r, where r
is a comma-separated list of repeat-x,
repeat-y, or no-repeat values (see
“Changing the Text’s Background” in
Chapter 10), one for each image.

o Applying multiple backgrounds.

<body>
<div class="night-sky">
<h1>In the night sky...</h1>

</div>
</body>
</html>
ano Multiple Backgrounds
Multiple Backgrounds + >

¥ x

. In'the pight'sky..>

E

»

0 Browsers that support multiple backgrounds
will render our example by layering the images

on top of each other, with the first one in the
comma-separated list at the top of the stacking
order. Adding multiple background images to a
single element is straightforward, but to ensure
that the content is still accessible, you need to
provide a simple fallback in the CSS rules by using
background-color.

388 Chapter 14

ann Multiple Backgrounds

Multiple Backgrounds ar =

In the night sky...

o This is what you will see in browsers that do
not support the multiple background image syntax.
If you adhere to the philosophy of progressive
enhancement, you should include either a
background-color or single background-image
property before the background-image rule as a
safety net for less-capable browsers.

0 To use multiple backgrounds, you need to

use the four individual long-form background
properties: background-color, background-image,
background-position, and background-repeat.
Using each, you can adjust how images are
positioned and repeated.

.night-sky {

background-color: #333;

background-image: url(ufo.png),
url(stars.png), url(stars.png),
url(sky.png);

background-position: 50% 102%, 100%
-150px, O -150px, 50% 100%;

background-repeat: no-repeat,
no-repeat, no-repeat, repeat-x;

height: 300px;

margin: 0 auto;

padding-top: 36px;

width: 75%;

Vendor prefixes are not required when
specifying multiple backgrounds.

You can use the standard short-form
syntax with multiple background images by
separating each set of background param-
eters with a comma. For example, you can
use background: url(image.jpg) 00
no-repeat, url(image2.jpg) 100% 10%
no-repeat; to accomplish the same thing as
the more repetitive long-form syntax.

Background images are layered on top of
each other, with the first image at the top and
the last image at the bottom of the stacking
order.

If a background-color value is speci-
fied, it will be applied as the final background
layer behind any images and will be used by
browsers that do not support multiple back-
ground images.

Browsers that do not support mul-

tiple background images will ignore the
background-image property and attempt to
fall back to the value for background-color.

Enhancements with CSS3 389

Using Gradient
Backgrounds

Gradient backgrounds, also new in CSS3,
allow you to create transitions from one
color to another without using images (@)
and @). The specification is still in flux, but
browser support is increasing as the speci-
fication is inching closer to being finalized.

Although the background gradient syntax
requires vendor prefixes to support the
widest array of browsers, I'll ease you into
using gradients by demonstrating them
using the non-prefixed properties. Addi-
tional information can be found in the tips
for this section, and you can find complete
examples, including the required vendor-
prefixed properties, in the code download
for this chapter.

In keeping with the philosophy of progres-
sive enhancement, it’s a good idea to
include a fallback option for browsers that
don’t support the background gradient
property. This can be a simple background
color or image and can be specified as

a separate rule prior to the background
gradient rule in your CSS.

There are two primary styles of gradients
(linear and radial) that can be created using
CSS, each with a different set of required
and optional parameters (@ and ©@).

o Five ways to implement gradients using
only CSS.

<body>

<div class="horizontal"></div>
<div class="vertical"></div>
«div class="diagonal"></div>
<div class="radial"></div>
<div class="multi-stop"></div>
</body>

8ano Gradient Backgrounds
‘ Ll Gradient Backgrounds

0 Browsers that support gradient backgrounds
should render the five examples similarly to
what is shown, provided the appropriate vendor
prefixes are appended to the example code.
Current browsers all require vendor prefixes

for background gradients. Browsers that do

not understand the gradient syntax will use the
fallback background property, if specified.

390 Chapter 14

G A simple two-color horizontal gradient using
the standard linear gradient syntax and also
containing a simple fallback color for browsers that
don’t support CSS gradients.

div {
float: left;
height: 150px;
margin: 10px;
width: 150px;
}

.horizontal {
background: f#cedce7;
background: linear-gradient(left,
tcedce7,#596a72);

0 Creating a vertical gradient is just a matter of
changing the first property to have a value of top
or bottom.

wvertical {
background: #cedce7;
background: linear-gradient(top,
t#cedce7,#596a72);

G It's possible to create angled gradients by
simply changing the value of the first property,
which sets the origin of the gradient to an

angle value. Angles are specified as the angle
between a horizontal line and the gradient line in
a counterclockwise direction; for example, odeg
creates a left-to-right horizontal gradient, whereas
90deg creates a bottom-to-top vertical gradient.

.diagonal {
background: f#cedce7;
background: linear-gradient(4sdeg,
ttcedce7, #596a72);

To create a fallback
background color:

Type background-color: color, where
color is any of the supported color names
or hex, RGB, RGBA, or HSL values.

To define the type of gradient:

Type background: type(, where type is
linear-gradient or radial-gradient.

To define where the gradient starts:

Type left followed by , to start the gradi-
ent from the left side of the element.

Or type right followed by , to start the
gradient from the right side of the element.

Or type top followed by , to start the gra-
dient from the top side of the element.

Or type bottom followed by , to start
the gradient from the bottom side of the
element.

Or type an angle value (like odeg, 45deg,
or 120deg) followed by , to change the
angle of the gradient. Angles are specified
as the angle between a horizontal line and
the gradient line in a counterclockwise
direction ©@.

Or type center (for radial gradients only)
followed by , to start the gradient from the
center of the element @.

0 Radial gradients include additional optional
parameters, but the simplest example uses the
same parameters as a linear gradient. In this case,
the origin for the gradient is the center of the
element, denoted by the center keyword.

.radial {
background: #cedce7;
background: radial-gradient(center,
#cedce7,#596a72);

Enhancements with CSS3 391

To specify the starting
and ending colors:

Type c1, c2), where c1 and c2 are the
starting and ending colors in the gradient.
Colors can be specified using color names
or hex, RGB, RGBA, or HSL values.

To create a gradient with
multiple colors:

1. Repeat the first two techniques for cre-
ating either a linear or radial gradient by
specifying the type of gradient and the
starting point (@ through ©).

2. Then type c1 p1, c2 p2, c3 p3), where
c#is a color (specified using color
names or hex, RGB, RGBA, or HSL val-
ues) and p# is the position of the color
(specified as a percentage from O to
100)

Earlier versions of Webkit-based brows-
ers (for example, Safari 4) used a non-standard
syntax to specify gradient backgrounds. Safari
5 and new versions of Chrome both support
the same syntax as Firefox but at the moment
still require the -webkit- and -moz- vendor
prefixes.

You can find the most current and
detailed information on using the gradient
properties from the teams at Mozilla (https://
developer.mozilla.org/en/CSS/-moz-radial-
gradient) and Webkit (http://webkit.org/
blog/1424/css3-gradients/).

You can create multicolor gradients by
specifying more than two colors and then
using one of the additional optional param-
eters (color-stop) in the gradient syntax @

@ Multi-step gradients (those that use more than
two colors) follow the same pattern but require the
color-stop position, which is specified using a
percentage value from 0O to 100.

.multi-stop {
background: url(multi-stop-gradient.jpg)
0 0 repeat-x;
background: linear-gradient(top, #ff0000
0%, #00ff00 50%, #0000ff 100%);

392 Chapter 14

http://webkit.org/blog/1424/css3-gradients/
http://webkit.org/blog/1424/css3-gradients/
https://developer.mozilla.org/en/CSS/-moz-radialgradient
https://developer.mozilla.org/en/CSS/-moz-radialgradient
https://developer.mozilla.org/en/CSS/-moz-radialgradient

Color can be specified using color names
or hex, RGB, RGBA, or HSLA values.

Although support is improving in the
latest versions of Web browsers, the gradi-
ent syntax is still in flux and requires vendor
prefixes, including ones for Internet Explorer
and Opera.

You can use visual tools like ColorZilla’s
gradient generator (http://colorzilla.com/
gradient-editor/) or Microsoft’s CSS gradient
background maker (http://ie.microsoft.com/
testdrive/graphics/cssgradientbackground
maker/) to take the tedious work out of creat-
ing CSS gradient code. These tools will also
automatically generate all the vendor prefix
properties for you to ensure the maximum
level of compatibility with older browser
versions.

Internet Explorer 10 includes sup-

port for CSS gradients natively. Versions
prior to 10 can use the proprietary filter:
progid:DXImageTransform.Microsoft.
gradient filter to create gradients, or they
can be created by using additional HTML
markup and SVG (as is the case for Internet
Explorer 9). Tools such as the ColorZilla gradi-
ent editor mentioned in the previous tip can
produce all the code you need for this, so
don’t worry about having to write it yourself.

You should accommodate unsupported
browsers by specifying either a background-
color or a background-image, but you
should keep in mind that images in the CSS
will be downloaded by browsers whether they
are used or not.

Firefox and Webkit additionally support
prefixed repeating-linear-gradient and
repeating-radial-gradient capabilities.

Enhancements with CSS3 393

http://colorzilla.com/gradient-editor/
http://colorzilla.com/gradient-editor/
http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/
http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/
http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/

Setting the Opacity
of Elements

Using the opacity property, you can
change the transparency of elements,
including images (@) and @).

To change the opacity of an element:

Type opacity: o, where o is the level of
opaqueness of the element to two decimal
places (without units).

The default value of opacity is 1. Values
can be set in two-decimal-place increments
from 0.00 (completely transparent) to 1.00
(completely opaque) (G and Q).

You can produce some interesting and
practical effects by using the opacity prop-
erty along with the :hover pseudo-property.
For example, you can change the opacity of an
element when a user mouses over it, or give
an element such as an optional form field the
appearance of being disabled.

o This document contains a div element with an
image enclosed.

<body>
<div class="box">

<img src="sleeves.jpg" width="420"
height="296" alt="Record Sleeves" />

</div>
</body>
</html>
anNnon Opacity
bo Opacity Il -

0 Here's what our example looks like with the div
element's opacity set to the default value of 1.

G By making the opacity value less than 1, you
can make an element and its children transparent.
In this case, | changed the opacity to 50 percent,
or .5. Including a zero before the decimal point is
not required.

img {
vertical-align: top;
}

.box {
background: #000;
opacity: .5;
padding: 20px;

394 Chapter 14

anon Opacity
'l M Opacity L+l -

0 Here's what our example looks like with the
div element’s opacity value setto .5 (50 percent
opaque). Notice that the solid black background of
the div element is now gray and that the image is
semi-transparent.

G This simple example demonstrates how you
can apply Internet Explorer’s proprietary filters for
versions prior to 9, which don’t natively support
opacity. The -ms-filter: declaration covers IE8,
while the simpler filter: declaration supports IE
versions 5 through 7.

div {

/* Sets the element's opacity to 50% and
includes the optional proprietary
filter declarations for Internet
Explorer prior to version 9 and also
ensures the element hasLayout for
those older versions of Internet
Explorer by using the zoom: 1
declaration */

-ms-filter: progid:DXImageTransform.
Microsoft.Alpha(opacity=50);

filter: alpha(opacity=50);

opacity: .5;

zoom: 1;

As with the opacity values for RGBA
and HSLA color units, you do not need to
include a leading zero before the decimal
point when setting a value for opacity.

Despite how it may appear, opacity is
not an inherited property. Children of an ele-
ment with an opacity of less than 1 will also
be affected, but the opacity value for those
child elements will still be 1.

The opacity property does not
natively work in Internet Explorer ver-

sions prior to 9, but it is possible to achieve
by using the proprietary -ms-filter:
progid:DXImageTransform.Microsoft.
Alpha(opacity=50); and filter:
alpha(opacity=50); properties in addition
to zoom: 1; on the element that triggers
hasLayout in the browser 0. You can find
out more about these filters at CSS Tricks
(http://css-tricks.com/64-css-transparency-
settings-for-all-broswers/), and you can find
out more about where hasLayout came from
and how it may affect you at http://haslayout.
net/haslayout.

Enhancements with CSS3 395

http://css-tricks.com/64-css-transparency-settings-for-all-broswers/
http://css-tricks.com/64-css-transparency-settings-for-all-broswers/
http://haslayout.net/haslayout
http://haslayout.net/haslayout

This page intentionally left blank

Lists

HTML contains elements specifically for
creating lists of items. You can create plain,
numbered, or bulleted lists, as well as lists
of descriptions. You can also nest one list
(or more) inside another one.

All lists are formed by a principal element
to specify what sort of list you want to cre-
ate (ul for unordered list, ol for ordered
list, and d1 for description list, known as a
definition list before HTML5) and second-
ary elements to specify what sort of list
items you want to create (11 for a list item
in an ol or ul, and dt for the term with dd
for the description in a d1).

Of these, the unordered list is the most
common across the Web, as it’s the de
facto standard for marking up most kinds
of navigation (there are several examples
of this throughout the book). But all three
list types have their place, which you'll
learn about in this chapter.

In This Chapter

Creating Ordered and Unordered Lists 398

Choosing Your Markers 401
Choosing Where to Start List Numbering 403
Using Custom Markers 404
Controlling Where Markers Hang 406
Setting All List-Style Properties at Once 407
Styling Nested Lists 408
Creating Description Lists 412

Creating Ordered
and Unordered Lists

The ordered list is perfect for provid-

ing step-by-step instructions on how to
complete a particular task (@) and @) or
for creating an outline (complete with links
to corresponding sections, if desired) of

a larger document. It is also the proper
choice for marking up breadcrumb naviga-
tion (see the tips). In short, any list of items
for which the order is meaningful.

Unordered lists may be the most widely
used lists on the Web, because they’re
used to mark up navigation (@ and @).

To create lists:

1. Type for an ordered list or
for an unordered list. For an ordered
list, you can include any of the optional
attributes start, type, and reversed.
(See “Choosing Where to Start List
Numbering” regarding start, “Choos-
ing Your Markers” regarding type, and
the last tip to learn about reversed,
which is not yet supported and so has
no visible effect.)

2. Type <1li> (that’s the first two letters
of the word “list”) to begin the first
list item. For an ordered list, you can
include the optional value attribute (see
“Choosing Where to Start List Number-
ing” for details).

3. Add the content (such as text, links,
or img elements) to be included in the
list item.

4. Type </1i> to complete each list item.

5. Repeat steps 2 through 4 for each new
list item.

6. Type or , to match the start
tag (from step 1) and complete the list.

o There is no official way to format a list’s title.
Most of the time, a regular heading (see Chapter 3)
or a paragraph (see Chapter 4) is the appropriate
lead-in to a list like the one in this example. It’s
conventional, but not required, to indent the list
items to indicate that they are nested in an ol (the
same is true when using a ul). That doesn’t make
them indent when displayed, though; that’s purely
a function of the CSS applied to the list.

<body>
<h1>Changing a light bulb</h1>

Make sure you have unplugged the
lamp from the wall socket.</1i>
Unscrew the old bulb.</1i>
Get the new bulb out of the
package.</1i>
Check the wattage to make sure
it's correct.</1i>
Screw in the new bulb.</1i>
Plug in the lamp and turn it
onl</1i>

</body>
</html>

) an ordered list - Mozilla Flrel'uﬂ o] |
File Edit ‘Wew History Bookmarks Tools Help

el -

| | | An ordered lisk

Changing a light bulb

1. Make sure you have unplugged the lamp
from the wall socket.

Tnserew the old bulb.

Get the new bulb out of the package.
Check the wattage to make sure it's correct.
Screw in the new bulb.

Plug i the lamp and turn it onl

Tt b b b2

0 This list uses the default option of Arabic
numerals to create a numbered ordered list.
You can change this with CSS. Both ordered
and unordered lists display indented by default,
whether or not they are indented in the HTML
itself

398 Chapter 15

G The list item element of unordered lists is
identical to those of ordered lists. Only the ul
element is different.

<body>
<h1>Pagelhacker, version 12.0: Features</h1>

New or improved features marked
with a solid bullet.</1i>
One-click page layout
<1i>Spell checker for 327 major
languages</1i>
Image retouching plug-in</1i>
Special HTML filters</1i>
Unlimited Undo's and Redo's
Automatic book writing

</body>
</html>

%) an unordered list - Mozill; = 10| x|
File Edit Wiew History Bookmarks Tools Help

| || an unordered lisk l + | =

PageWhacker, version 12.0:
Features

® One-click page layout

® Spell checker for 327 major languages
* Tmage retouching plug-mn

® Tnlimited TThdo's and Eedo's

* Automatic book writing

0 Unordered lists have solid round bullets by
default. You can change these with CSS.

Don’t make the decision about which list
type to use based on which marker style you
want next to your content. After all, you may
always change that with CSS (yes, you can
even show bullets on an ordered list). Instead,
think about your list’s meaning—would it
change if the order of the list items changed?
If the answer is yes, mark up the list as an
ordered list. Otherwise, use an unordered list.

Regarding using lists to mark up groups
of links, use unordered lists to mark up most
groups of links, such as your main navigation,
a list of links to videos or related stories, or the
links in your footer. Use ordered lists to mark
up breadcrumb navigation, since the links
represent a distinct sequence of links (in other
words, the order is meaningful). Breadcrumb
navigation is often displayed horizontally
above the main content area to indicate where
the current page exists in the site’s naviga-
tion path. For instance, on a page providing
the details of a particular mobile phone, it
could be: Home > Products > Phones > The
Fone 3.0. Each item in the list except the last
would be a link, since the visitor is on the page
for The Fone 3.0. I've included this example

in Figure (9 of “Styling Nested Lists” (the
breadcrumb navigation is between the main
navigation on top and the large product name
heading).

The completed sample Web page in
Chapter 11 demonstrates lists used and
presented in a variety of ways. It includes

an unordered list for the navigation (styled
horizontally and with bullets), an unordered
list for a list of images (styled horizontally with
no markers), and an ordered list for a list of
chronological monthly archive links (styled
with bullets). Chapter 3 also has examples that
include a ul as navigation.

Unless you specify otherwise with CSS,
items in ordered lists will be numbered with
Arabic numerals (1, 2, 3, and so on)

Items in unordered lists have solid round
bullets by default (). You can choose differ-
ent bullets (see “Choosing Your Markers”) or
even create your own (see “Using Custom
Markers”).

continues on next page

Lists 399

Be sure to place list content only within
1i elements. For instance, you aren’t allowed
to put content between the start ol or ul tag
and the first 1i element.

You can nest various types of HTML
elements in 1i elements, such as any of the
phrasing content elements (like em, a, cite,
and so on). Nesting paragraphs and divs in
list items is valid too, though there are fewer
cases in which you’d have occasion to do so.

You may create one list inside another—
known as nesting lists—even mixing and
matching ordered and unordered lists. Be
sure to nest each list properly, using all the
required start and end tags. See examples of
nested ordered and unordered lists in “Styling
Nested Lists.”

Lists are indented from the left margin by
default, though you can remove the indenta-
tion (or add more) with CSS. Depending on
how much you reduce the left margin, your
bullets might stick outside your content or
disappear beyond the left edge of the window.
(You can see an example of them sticking out
in Chapter 11.)

If you specify your content direction

as right-to-left, as you would if the page’s
base language were Hebrew, for instance,
the lists are indented from the right margin
instead of the left. To achieve this, set the
dir attribute on your page’s html element:
<html dir="rt1" lang="he">. In this case,
lang is set to he for Hebrew. You also can set
dir and lang on elements within the body
to override the settings on the html element.
The dir attribute defaults to 1tr.

At the time of this writing, browser
support for the Boolean reversed attri-
bute is non-existent, but its purpose is to
indicate a descending ordered list (you can
specify it with either <ol reversed> or
<ol reversed="reversed"y).

400 Chapter 15

o Here is our simple ordered list, to which we will
apply capital Roman numerals (upper-roman).

<body>

<h1>The Great American Novel</h1>

Introduction</1i>
Development</1i>
Climax</1i>
Denouement</1i>
Epilogue

</body>

</html>

0 You can apply the 1ist-style-type property
to any list item. If you had two lists on this page,
one of which was unordered, you could apply
capital Roman numerals to just the ordered one by
changing the selector in this example to ol 1i.

1i {
list-style-type: upper-roman;

}

¥2) Choosing Your Markers - Mozilla| -0l x|
File Edit Yiew History Bookmarks Tools Help

| | | Choosing Your Markers | + | =

The Great American Novel

I Introduction
II. Development
0. Chmaz

TV Denouement
V. Epiogue

0 Now the ordered list has capital Roman
numerals. Note that most browsers align numeric
markers to the right (but to the left of the list item
content, as shown).

Choosing Your
Markers

When you create a list, be it ordered @

or unordered, you can also choose what
sort of markers (that is, bullets, numbers, or
images) should appear to the left of each
list item.

To choose your markers:

In the style sheet rule, type
list-style-type: marker, where marker
is one of the following values:

m disc ()

m circle ()

®m square (W)

m decimal (1,2,3,..)

= upper-alpha (A, B,C,..))

m lower-alpha(a, b, c,...)

m upper-roman (I, I, I, 1V, ...) (@ and @)

m lowex-roman (i, ii, iii, iv, ...)

Lists 401

To display lists without markers:

In the style sheet rule, type
list-style-type: none.

By default, unordered lists use discs for
the first level, circles for the first nested level,
and squares for the third and subsequent level
lists. See “Styling Nested Lists” for more on
this topic.

The disc, circle, and square bullets vary
slightly in size and appearance from one
browser to another.

@D You may apply any of the marker styles
to both ol and ul with 1list-style-type.In
other words, an ol could have square markers
and a ul decimal markers.

You can also specify an ordered list’s
marker type with the type attribute, although
| recommend defining the list style type in CSS
instead whenever possible. The acceptable
values for type are A, a, I, i, and 1, which
indicate the kind of numeration to be used (1
is the default). For example, <ol type="I">
specifies uppercase Roman numerals.

402 Chapter 15

o In this example, I've omitted some steps but
want to maintain the original numbering of the
remaining steps. So | start the whole list at 2 (with
start="2") and then set the value of the second
item to 5 (with value="5"). Both attributes are
optional and don’t have to be used together as
they are here.

<body>
<h1>Changing a light bulb (with a few steps
missing)</h1>
<ol start="2"»
Unscrew the old bulb.</1i>
<li value="5">Screw in the new bulb.
</1i>
<1i>Plug in the lamp and turn it on!
</1i>

</body>
</html>

¥%) Choosing Where to Stark Lis 1Ol =|
File Edit Wiew History Bookmarks Tools Hel

| || Choosing Where to Start Lisk Nurmbering I + | 5

Changing a light bulb
(with a few steps missing)
2. Unserew the old bulk.

5. Screw in the new bulb,
. Plug in the lamp and turn it onl

0 Notice that not only are the first and second
items numbered as we’ve specified, but the third
item (“Plug in the lamp and turn it on!”) is also
affected.

Choosing Where to
Start List Numbering

You might want to start a numbered list
with something other than a default 1).

To determine the initial value of an
entire list's numbering scheme:

Within the ol start tag, type start="n",
where n represents the list’s initial value.

To change the numbering of a
given list item in an ordered list:

In the desired 1i item, type value="n",
where n represents the value for this list
item. The value is always specified numeri-
cally and is converted by the browser auto-
matically to the type of marker specified
with CSS or with the type attribute (see
“Choosing Your Markers”).

If you use start, always give it a
numeric value even if you decide to have the
list display with letters or Roman numerals
(see “Choosing Your Markers”). Browsers will
display the markers as intended.

The value attribute overrides the start
value.

When you change a given list item’s num-
ber with the value attribute, the subsequent
list items are also renumbered accordingly.

Using value also is handy to indicate
that two or more items hold the same spot in
an ordered list. Take, for example, a list with
the top five finishers in a road race. Normally,
they would display as 1, 2, 3, 4, 5. But if there
were a tie for second, by specifying the third
list item as <1i value="2"5, the list would
display as 1, 2, 2, 3, 4.

Your list can include more than one 1i
with a value attribute.

Lists 403

Using Custom Markers

If you get tired of circles, squares, and
discs, or even Roman numerals, you can
create your own custom marker with an
image. You don’t have to change your
HTML to do so @, just the CSS ©.

To use custom markers:

1. Inthe rule for the desired list or list
item, type list-style: none; to turn off
normal markers.

2. In the rule for the desired list, set the
margin-left and/or padding-left
properties to dictate how much the list
items will be indented. (Both properties
are usually necessary to achieve similar
results across browsers.) Settings of
margin-left: 0; and padding-left: 0;
remove all indentation. Note that if
you’ve set dir="rt1" for your content,
you should adjust the margin-right
and padding-right properties instead.
See the tips in “Creating Ordered and
Unordered Lists” for more details about
dir, lang, and right-to-left languages in
these list types.

3. Inthe rule for the 1i elements within
the desired list, type background:
url(image.ext) repeat-type
horizontal vertical;, where
image.ext is the path and file name
of the image you’d like to use as the
custom marker; repeat-type is a
value of no-repeat (typical), repeat-x,
or repeat-y; and horizontal and
vertical are values for the position of
the background within the list items

Type padding-left: value;, where
value is at least the width of the back-
ground image in order to prevent the
list item content from overlapping the
custom marker.

o This is just like any ordinary unordered
list, but with a little CSS we can make it look
different @

<body>

<h1>PageWhacker, version 12.0: Features</h1>

One click page layout
Spell checker for 327 major
languages</1i>
Image retouching plug-in</1i>
Unlimited Undo’s and Redo’s</1i>
Automatic book writing</1i>

</body>
</html>

0 First you turn off the default markers (so you
don’t see both bullets and the arrows) and adjust
how far the list items will be indented. Then you
assign the arrow background image to each list
item, positioning it a couple of pixels from the top
of the 1i and being sure to add left padding so
the text doesn’t overlap the arrows. Be sure to
include the proper path to your image in the url
part of the background. The url should be where
the image is located relative to the style sheet,
not to the HTML page (see “Changing the Text’s
Background” in Chapter 10 for related information).

ul {
/* turn off the default markers */
list-style: none;

/* set indentation of list items. */
margin-left: o;
padding-left: 15px;

}

1i {
/* show image 2 pixels from top of item */
background: url(arrow-right.png)
no-repeat 0 2px;

/* bump the text over to make room for
the arrow */
padding-left: 25px;

404 Chapter 15

¥} using Custom Markers - M

a Fi = [=] 3

File Edit Wiew History Bookmarks Tools | Help

| | | Using Custaomn Markers i + | -

PageWhacker, version 12.0:
Features

» One click page layout

¥ Spell checker for 327 major languages
» Image reteuching plug-in

» Tnlwnited Tndo's and Redo's

> Automnatic book writing

0 The default bullets are replaced by the arrow
image.

There should be no space between
url and the opening parenthesis (:). Quotes
around the URL are optional.

Note that relative URLs are relative
to the location of the style sheet, not the
Web page.

Apply a class to one or more 1i ele-
ments and define a style rule for it if you want
to apply a custom marker to certain list items
within a list. Depending on the look you want,
you may need to adjust the left margin of the
1i items with the class rather than the margin
and padding of the parent ol or ul element.

Another way to display custom mark-

ers is with the 1ist-style-image property.
Here’s an example: 1i { 1list-style-image:
url(image.png); }. However, it never quite
lived up to its promise, because browsers
don’t render them consistently. Plus, you have
more control over the placement of image
markers with the method shown in ()}, which
is why people tend to favor that approach. The
list-style-image property overrides 1ist-
style-type. But if for some reason the image
cannot be loaded, the marker specified with
list-style-type is used.

Lists 405

Controlling Where
Markers Hang

By default, lists are indented from the left
margin (of their parent). Your markers can
either begin halfway to the right of that
starting point @), which is the default, or
flush with the rest of the text (called inside)

(O and O).

To control where markers hang:

1. In the style sheet rule for the desired list
or list item, type list-style-position:.

2. Type inside to display the markers
flush with the list item text), or out-
side to display the markers to the left
of the list item text (the default).

@D By default, markers are hung outside the
list paragraph.

The list-style-position property is
inherited.

=10l x|

¥)) Controlling where Markers Hang - Moz
File Edit “iew History Bookmarks Tools Help

4] z

| || Contraling where Markers Hang

PageWhacker, version 12.0:
Features

® One-click page layout. (This 15 particularly usefil
when vou're under a heavy deadline. You just
select whether you want the end productto be a
boolk or a Web site, and poof] it's donel)

® Spell checker for 327 major languages

® Image retouching plug-in

e TTnlirnited Undo's and Eedo's

* Automatic book writing

0 This demonstrates how browsers render
wrapped text in a list item relative to the marker by
default. The markers are outside the content. You
can change this with CSS. I've added a bit more
text to the first feature so that the effect of hanging
markers inside is obvious ((:)) and (2)).

0 Setting 1ist-style-position to inside
changes the display.

1i {
list-style-position: inside;

}

¥ Controlling where Markers Hang - M] o] |
File Edit Wew History Bookmarks Tools Help

[;

| || Controlling where Markers Hang

PageWhacker, version 12.0:
Features

® One-click page layout. (This iz particularly
usefil when you're under a heavy deadline. You
just select whether you want the end product to be
a book or a Web site, and poof, it's doneld

® ZSpell checker for 327 major languages

® Image retouching plug-in

® Unlimited Undo's and Eedo's

® Automatic book writing

G The markers for the lines that wrap begin at the
left margin of the list item, instead of outside it to
the left.

406 Chapter 15

o This style rule is equivalent to setting the
list-style-position to inside and the
list-style-type to circle. It’s just shorter. You
may also specify the 1ist-style-image in the
shorthand (see the first tip).

1i {

list-style: inside circle;
}

) list-style Shorthand - Mozilla Fi 3
File Edit Wew History Bookmarks Tools Help

[:

=10l

| || list-style Shorthand

PageWhacker, version 12.0:
Features

o One-click page layout. {This i3 particularly
usefil when you're under a heavy deadline. You
just select whether you want the end product to be
a bool or a Web site, and poof, it's donel)

o 3pell checker for 327 major languages

© Image retouching plug-in

o Unlirnited Undo's and Eedo's

o Automatic ool writing

0 The result is the same as in in the
“Controlling Where Markers Hang” section,
except I've switched the markers to circles.

Setting All List-Style
Properties at Once

Just as it has shorthand properties for
background, border, font, outline, and
more, CSS has one for the 1list-style
features €.

To set all the list-style
properties at once:

1. Type list-style:.

2. If desired, specify the kind of markers
that should appear next to the list items,
if any (as described in “Choosing Your
Markers”).

3. If desired, specify the custom marker
that should be used for list items (as
described in the last tip of “Using Cus-
tom Markers”).

4. If desired, specify whether markers
should be hung outside the list para-
graphs or flush with the text (as described
in “Controlling Where Markers Hang”).

If you want to specify a
list-style-image in the shorthand property,
the example in would instead be typed as
1i { list-style: url(arrow-right.png)
inside square; }.

You may specify any or all of the three
list-style properties. .y shows two.

You might think that by omitting one of
the three properties, you won’t be affecting
it, but that’s not always the case. Any prop-
erties not explicitly set are returned to their
defaults (disc for 1ist-style-type, none
for list-style-image, and outside for
list-style-position).

The properties may be specified in any
order.

The list-style property is inherited.

Lists 407

Styling Nested Lists

You may insert one type of list in another;
the inner list is known as a nested list. You
can do this with ordered and unordered
lists (together or independently). There’s
also another kind of nested list; see “Creat-
ing Description Lists” for an example.

Nesting lists is particularly useful with

an outline structured as ordered lists—
where you may want several levels of
items (@) through @)—or for navigation
with sub-menus structured as unordered
lists (@ and @; see the sidebar for more
details). You can style nested lists a variety
of ways, as the examples demonstrate.

To style nested lists:

1. For styling the outermost list, type
toplevel 1i {style_rules}, where
toplevel is the list type of the outer-
most list (for example, o1, ul, or dt) and
style_rules are the styles that should
be applied.

2. For the second-level list, type toplevel
2ndlevel 1i {style_rules}, where
toplevel matches the toplevel in step
1and 2ndlevel is the list type of the
second-level list.

3. For the third-level list, type toplevel
2ndlevel 3rdlevel 1i {style_rules},
where toplevel and 2ndlevel match
the values used in steps 1and 2 and
3rdlevel is the kind of list used for the
third nested list.

4. Continue in this fashion for each nested
list that you wish to style.

o There are four nested lists here, one in the
Introduction list item, one in the Development
item, one in the Climax item and one, highlighted
and in bold, inside the “Boy gives Girl ultimatum”
item (which is inside the Climax item).

<body>

<h1>The Great American Novel</h1>

Introduction

<1li>Boy's childhood</1i>
<1i>Girl's childhood</1i>

</1i>
Development

Boy meets Girl
Boy and Girl fall in love
</1i>
Boy and Girl have fight
</1i>

</1i>
Climax

Boy gives Girl ultimatum

<1li>Girl can't believe
her ears</1li>
Boy is indignant at
Girl's indignance</1i>

</1i>
Girl tells Boy to get
lost</1i>

</1i>
Denouement</1i>
Epilogue</1i>

</body>
</html>

408 Chapter 15

0 You can format each level of a nested list
separately. If you use ems or percentages for the
font size of the list text, be sure to add the 1i 1i {
font-size: 1em; } (or 100% instead of 1em) so that
it doesn’t shrink to the point of being illegible in
the nested lists (see the last tip).

ol 1i {
font-size: .75em;
list-style-type: upper-roman;

}
ol ol 1i {

list-style-type: upper-alpha;
}

ol ol ol 1i {
list-style-type: decimal;

}
1i 1i {

font-size: 1em;
}

&) Styling Nested Ordered : 10l x|
File Edit Wiew History Bookmarks Tools Help

| | | Styling Mested Crdered Lists | + | *

The Great American Novel

I. Introduction
&. Boy's childhood
B. Girl's childhood
II. Developraent
&, Bow meets Girl
B. Boy and Girl fall in lowve
C. Boy and Girl hawe fight
I Clirmax
& Boy gives Girl ultiraatura
1. Girl can't believe her ears
2. Boy iz indignant at Girl's
indigrance
B. Girl tells Boy to get lost
I¥. Denomernent
V. Epilogue

G The first-level lists (o1 1i) have capital Roman
numerals. The second-level lists (ol ol 1i) have
capital letters. The third-level lists (o1 ol ol 1i)
have Arabic numerals.

Your selectors should reflect the types
of nested lists in your document; that is, you
might need something like ul ul ol 1i.

Alternatively, you could add a class to
each nested list and style it accordingly. But
the method shown here allows you to control
the styling without changing the HTML.

Ordered lists always use Arabic numerals
(1, 2, 3) by default, regardless of their nesting
position. Use 1ist-style-type to specify
other numbering schemes (see “Choosing
Your Markers”). According to The Chicago
Manual of Style, the correct nesting order

for lists is I, A, 1, a (and the 1 and a levels are
repeated from then on).

By default, the first level of an unordered
list will have solid round bullets, the next will
have empty round bullets, and the third and
subsequent levels will have square bullets.
Again, use list-style-type to specify the
type of bullets you want (see “Choosing Your
Markers”).

Since list items (1i elements) can be
nested within other list items, you have to

be a bit careful with font sizes specified in
relative values. If you use something like 1i
{font-size: .75em; }, the font size of the
outermost list item will be 75% of its parent
element; so if the parent is a default 16 pixels
high, the outermost list item will be 12 pixels,
and not a problem. However, the font size of
the first nested list item will be 75% of its par-
ent (the first list item, which is 12 pixels) and
thus will be only 9 pixels high. Each level gets
worse quickly. One solution is to add 1i 1i
{font-size: 1em; } () (or 100% instead of
1em). Now nested list items will always be the
same size as top-level ones (9. (Thanks to Eric
Meyer, www.meyerweb.com.)

continues on next page

Lists 409

www.meyerweb.com

0 Here’s another example of nested lists. In this case, a navigation menu is structured as an unordered list
with two nested unordered lists for sub-navigation. Note that each nested ul is contained within its parent
start tag <1i> and end tag </1i>. With a little CSS, you can lay out the navigation horizontally, hide the sub-
menus by default, and show them based on the visitor’s interaction (2.

<body>
<nav role="navigation">
<ul class="nav">
Home</1i>
Products

Phones</1i>
Accessories</1i>

</1i>
Support

Community Forum

</1i>
Contact Us</1i>
How-to Guides</1i>

</1i>
About Us</1i>

</nav>

</body>
</html>

tes > ThaFone 10™

The Fone 3.0™

B fact, the sy thisg It ca
Wa'ta narving that fer 48

Nask Hovnt caml Inside o dus ks cope,

9 Both the Products and Support list items
contain sub-menus in nested uls, but neither
shows by default because of the CSS I've applied.
In this case, the Support sub-menu displays
because I've hovered over the 1i that contains
both the Support link and the related sub-menu
nested list (). The complete CSS is available on
the book site.

410 Chapter 15

Using Nested Lists for Drop-Down Navigation

One use for nested lists is to structure drop-down (or fly-out) navigation menus 2. You can style
the navigation with CSS so that each sub-menu shows only when the visitor hovers over the parent
listitem (2 and hides again when the visitor moves the pointer away.

You can implement this effect a few ways, but it always involves leveraging the :hover pseudo-
class as part of the selector that reveals the sub-menu. Here’s one such approach to hide the
nested lists by default and then reveal them when the visitor hovers:

/* Default state of sub-menus */

.nav 1i ul {
left: -9999em; /* moves sub-menus off-screen */
position: absolute;

z-index: 1000;

/* State of sub-menus when parent 1i hovered upon */
.nav li:hover ul {
display: block; /* for older versions of IE */

left: auto; /* puts sub-menus back in natural spot */

}

The corresponding HTML is shown in 2. You’ll need more CSS than this to implement the hori-
zontal layout, remove the bullets from the list items, and otherwise adjust the presentation to meet
your needs. The complete HTML and CSS for the page shown in (3 is available on the book site at
www.bruceontheloose.com/htmlcss/examples/chapter-15/dropdown-nav.html. I've also included
several comments in the code.

You can use a similar approach for a vertical navigation with fly-out sub-menus that appear to the
side.

Lists 411

www.bruceontheloose.com/htmlcss/examples/chapter-15/dropdown-nav.html

creati ng 0 You may want to add formatting to the terms in

the dt elements to help them stand out G

Description Lists at 1

HTML provides a type of list specifically for }
describing an association between names

font-weight: bold;

(or terms) and values in groups. Dubbed
description lists in HTML5, they were

known as definition lists in previous ver-
sions Of HTML. | || Description Lisk

5 [3

File Edit Wiew History Bookmarks | Tools Help
il -

%) Description List - Mozilla Firefox

According to the HTML5 specification, Horror Movie Legends
“Name-value groups may be terms and
definitions, metadata topics and values,
questions and answers, or any other Frankenstein and related horror films,
groups of name-value data.” Each list is this scaremaster's real name was
contained in a d1, and each name-value Williatn Henry Pratt.
group within it has one or more dt ele- Cluistopher Lee - _

Lee took a bite out of audiences as
ments (the names or terms) followed by

Boris Karloff

EBest known for his role in

Diracula in multiple Harmer horror

one or more dd elements (their values). classice

O shows a basic description list example.

Aside from some boldfacing applied G By default, the name (the dt) is aligned to
with a simple style rule @, it renders by the left, and the value (the dd) is indented. The
default as G names are in bold thanks to the simple rule in

Otherwise they’d appear as normal text.

Q This is the most basic type of definition list, with one dt matched with one dd in each name-value group.
Each group is separated by a blank line merely for legibility when reading the code. The space between
groups isn’t required, doesn’t change the meaning of the content, and doesn’t affect its rendering.

<body>
<h1>List of Horror Movie Legends</h1>
<dl>

<dt>Boris Karloff</dt>

<dd>Best known for his role in <cite>Frankenstein</cite> and related horror films, this
scaremaster's real name was William Henry Pratt.</dd>

<dt>Christopher Lee</dt>
<dd>Lee took a bite out of audiences as Dracula in multiple Hammer horror classics.</
dd>

</d1l>

</body>
</html>

412 Chapter 15

0 This example includes multiple dts paired with
a single dd in each name-value group because the
defined terms have more than one spelling but
share the same definition.

<body>
<h1>Defining words with multiple spellings</h1>

<dl>
<dt><dfn>bogeyman</dfn>, n.</dt>
<dt><dfn>boogeyman</dfn>, n.</dt>
<dd>A mythical creature that lurks under
the beds of small children.</dd>

<dt><dfn lang="en-gb”>aluminium
</dfn>, n.</dt>
<dt><dfn>aluminum</dfn>, n.</dt>
<dd>...</dd>
</dl>

</body>
</html>

G This will add more space between the name-
value groups than they have by default.

dd + dt {
margin-top: 1em;

}

¥2) Description List - Mozilla

=10l %]

File Edit Wiew History Bookmarks Tools Help

| || Description List | + | =

-

Defining words with
multiple spellings

bageyman, n.

baogayman, 1.
A mythical creature that lurks under
the beds of small children.

aluminium, n. LI
aluminim, n.

0 Now you can tell where one group of
descriptions stops and the next starts.
The rule in works because “aluminium,
n.” is contained in a dt right after the dd
from the previous name-value group.

All of the following arrangements are
valid for a group of dt and dd elements
within a d1:

m Asingle dt grouped with a single dd).
(Also see @ under Director and in the
nested description list under Cast.) This
is the most common occurrence.

= Asingle dt grouped with multiple dd
elements. See Writers in @.

m Multiple dt elements grouped with
a single dd @. (With sample styling
adjustments shown in @ and @.)

m Multiple dt elements grouped with
multiple dd elements. An example of
this would be if bogeyman/boogeyman
in © had more than one definition.

Use the dfn element around the names
in the dts to indicate that the list is defin-
ing terms, such as in a glossary (). (See
“Defining a Term” in Chapter 4 for more
about dfn.)

continues on next page

Lists 413

You may also nest description lists (&) and
style them with CSS as you please ().
When a d1 is nested in another one, it
automatically indents another level by
default @ (you can also change that with
CSS, of course).

To create description lists:

1.
2.
3.

Type <d1>.
Type <dt>.

Type the word or short phrase that will
be described or defined, including any
additional semantic elements (such

as dfn).

Type </dt> to complete the name in the
name-value group.

Repeat steps 2 through 4 as necessary
if the group has more than one name
or term

6. Type <dd>.

Type the description of the term that
was entered in step 3.

Type </dd> to complete the description
(the value) in the name-value group.

Repeat steps 6 through 8 as necessary
if the group has more than one value to
define (see the Writers group in (D).

10. Repeat steps 2 through 9 for each

group of terms and descriptions.

11. Type </d1> to complete the list of

definitions.

@ Here’s an example of a description list that
describes a film’s director, writers, and cast, with
the cast member names and their characters in a
nested description list. You can style the nested
list differently, as desired

<body>
<h1>Credits for <cite>Amdeacute;lie</cite></h1>

<dl>
<dt>Director</dt>
<dd>Jean-Pierre Jeunet</dd>

<dt>Writers</dt> <dd>Guillaume Laurant
(story, screenplay)</dd>
<dd>Jean-Pierre Jeunet (story)</dd>

<dt>Cast</dt>
<dd>
<!-- Start nested list -->
<d1l>
<dt>Audrey Tautou</dt> <!-- Actor/
Actress -->

<dd>Am8eacute;lie Poulain</dd>
<l-- Character --»

<dt>Mathieu Kassovitz</dt>
<dd>Nino Quincampoix</dd>

</d1l>

<!-- end nested list -->
</dd>
</d1l>
</body>
</html>

414 Chapter 15

0 | want to distinguish the terms in the main

list from those nested within it, so | style dt
elements with uppercase text and then return any
dt elements in a nested d1 back to normal (the
text-transform: none; declaration). However,
note that all terms display as bold because
the declaration in the first rule applies to all dt

elements and | didn’t turn that off in the nested list.

dt {
font-weight: bold;
text-transform: uppercase;

}

/* style the dt of any dl within another
dl */
dl dl dt {
text-transform: none;

}

dd + dt {
margin-top: lem;

}

) Nested Definition List - Mozilla Fit 101 x|
File Edit Wew History Bookmarks Tools Help

| || Mested Definition Lisk | o | 5

-

Credits for Ameélie

DIRECTOR

Jean-Pierre Jeunet

WRITERS
Cruillavme Lavrant {story, screenplay)
Jean-Pierre Jeunet (story)

CAST
Audrey Tautou

Ameéle Poulain

Mathien Kassovitz
Mine Quincamp ot =l

0 When a d1 is nested in another one, it
automatically indents another level by default.
With the styles from 0 applied, the first-level dt
elements are in uppercase letters, while the ones
in the nested list are normal. All are bold.

Browsers generally indent descrip-
tions (values) on a new line below their terms
(names) 0.

You'll notice from the examples ({),),
and () that you don’t have to—or more to the
point, shouldn’t—mark up single paragraphs
of text as p elements within the dd elements.
However, if a single description is more than
one paragraph, do mark it up with p elements
inside one dd instead of splitting up each para-
graph (without p elements) into its own dd.

Lists 415

This page intentionally left blank

Forms

Until now, all the HTML you have learned

has helped you communicate your ideas

to your visitors. In this chapter, you'll learn
how to create forms that enable your visi-
tors to communicate with you.

There are two basic parts of a form: the
collection of fields, labels, and buttons
that the visitor sees on a page and hope-
fully fills out; and the processing script that
takes that information and converts it into
a format that you can read or tally.

Constructing a form’s fields and buttons
is straightforward and similar to creating
any other part of the Web page. Some of
these form field types include text boxes,
special password boxes, radio buttons,
checkboxes, drop-down menus, larger
text areas, and even clickable images.
Each element has a name that will serve
as a label to identify the data once it is
processed. You can use CSS to style the
placement and formatting so the form is
clear and easy to use.

In This Chapter

Creating Forms

Processing Forms

Sending Form Data via Email
Organizing the Form Elements
Creating Text Boxes

Creating Password Boxes

Creating Email, Telephone, and
URL Boxes

Labeling Form Parts

Creating Radio Buttons
Creating Select Boxes

Creating Checkboxes

Creating Text Areas

Allowing Visitors to Upload Files
Creating Hidden Fields
Creating a Submit Button

Using an Image to Submit a Form

Disabling Form Elements

New HTML5 Features and Browser

Support

49
421
424
426
428
431

432
434
436
438
440
a4
442
443
444
446
447

448

Using forms often requires using a server-
side language to receive the submitted
information. It requires code on the Web
server that listens for form responses and
processes the information in the response
by storing information in a database, send-
ing it in an email, or redirecting the user
to new information. | recommend using
PHP to start. It is easy and straightforward
and perfectly suited to making Web pages
interactive.

There are plenty of other server-side
languages for processing forms. Server-
side languages are beyond the scope of
this book, and even explaining how to use
existing scripts stretches the limits a bit, so
| have provided some ready-made scripts
to help you get started.

418 Chapter 16

o Every form has three parts: the form element,
the actual form elements where the visitor enters
information, and the submit button (or active image)
that sends the collected information to the server.

<form method="post" action="showform.
php">
<fieldset>
<h2 class="account">Account</h2>

<label for="first name">First
Name:</1label>
<input type="text" id="first_
name" name="first name"
class="large" />
</1i>

<label for="last_name">Last
Name:</label>
<input type="text" id="last_
name" name="last_name"
class="large"/>
</1i>

<input type="submit"
class="create_profile"
value="Create Account">
</fieldset>
</form>

Creating Forms

A form has three important parts: the form
element, which includes the URL of the
script that will process the form and its
method (post or get); the form elements,
like fields and select boxes (checkboxes,
drop-down menus, and radio buttons); and
the submit button, which triggers send-
ing the data to the script listening on the
server).

There are many details about choosing
whether your form should be method=
"post" or method="get". In general, | rec-
ommend using method="post", because
you can send more data to the server,
and the information in your form is not
shown in the URL. So if you're saving,
adding, and deleting data in a database,
post is the correct choice. If your form is
method="get", your form data will show
in your browser’s address bar, so the user
can bookmark the results. Most search
engines use method="get" in their search
forms so you can save a search query or
send it to a friend.

To create a form:
1. Type <form method="post".

2. Type action="script.url">, where
script.url is the location on the server
of the script that will run when the form
is submitted.

3. Create the form’s contents (including
a submit button), as described in the
sections starting with “Creating Text
Boxes.”

4. Type </form> to complete the form.

continues on next page

Forms 419

You can download the showform.php
script from the book’s Web site (www.bruceon
theloose.com/htmlicss/examples/) and use it

in step 2 to test your forms as you go through
this chapter. It is also shown in Q in “Process-
ing Forms.”

In order for your visitor to send you
the data in the form, you’ll need to include a
button.

You can use CSS to lay out your form
elements 0 The form example that | dem-
onstrate with illustrations throughout this
chapter is shown in 0

You can also use the get method to
process information gathered with a form.
However, since the get method limits the
amount of data that you can collect at one
time and this form has a file upload, | recom-
mend using post.

Create a New Account

ACCOUNT
First Nome
Lot Nome:
Ema

Pasewsn

Rp e Pasewen

G Here is the complete New
Account form discussed in this
chapter.

0 Here is a portion of the style sheet used to
format the form. You can find the full style sheet on
the book’s Web site (www.bruceontheloose.com/
htmlcss/examples/).

fieldset {
background-color: #fififi;
border: none;
border-radius: 2px;
margin-bottom: 12px;
overflow: hidden;
padding: 0 10px;

}

ul {
background-color: #fff;
border: 1px solid #eaeaea;
list-style: none;
margin: 12px;
padding: 12px;

}

ul 1i {
margin: 0.5em O;

}

label {
display: inline-block;
padding: 3px 6px;
text-align: right;
width: 150px;
vertical-align: top;

}

input, select, button {
font-size: 100%;

}

.small {

width: 75px;
}
.medium {

width: 150px;
}
large {

width: 250px;
}

420 Chapter 16

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

Server Side vs. Client Side

PHP is a server-side language, which
means it runs on the computer that
serves your Web pages (aptly called a
server), not on your visitor's computer
where the page is viewed. Your script
must be uploaded to a server to work.
In addition, that server must have PHP
installed for the script to be interpreted.
Server-side languages are needed for
many functions of a professional Web
site, such as storing data and sending
emails.

Client-side languages, like JavaScript,
work inside the browser. They can do
many tasks without interacting with the
server at all. They are great for manipu-
lating the browser window, checking

that all the data has been entered before

submitting a form, and other tasks that
happen without the server (or before the
server gets involved).

Processing Forms

A form gathers the information from your
visitor, and the script processes that infor-
mation. The script can log the information
to a database on the server, send the infor-
mation via email, or perform any number of
other functions.

In this chapter, since the focus is on creat-
ing Web forms, we’ll use a very simple PHP
script to echo the data back to the visitor
when they fill out and submit a form @.

I’ll also give you a script that you can use
to submit a form’s contents to your email
address ©.

About PHP

PHP (which is a recursive abbreviation that
stands for PHP: Hypertext Preprocessor)

is an open-source scripting language that
was written specifically for making Web
pages interactive. It is remarkably simple

0 Here is the script used to process the forms in this chapter. Notice that the PHP script lives right in an HTML
page. (You can find a commented version of this script at www.bruceontheloose.com/htmicss/examples/.)

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Processing Form Data</title>
<style type="text/css">
body {
font-size: 100%;
font-family: Arial, sans-serif;

}

</style>
</head>
<body>

<p>This is a very simple PHP script that outputs the name of each bit of information (that
corresponds to the <code>name</code> attribute for that field) along with the value that was sent

with it right in the browser window.</p>

<p>In a more useful script, you might store this information in a MySQL database, or send it to your

email address.</p>

code continues on next page

Forms 421

www.bruceontheloose.com/htmlcss/examples/

and straightforward. (I highly recommend
Larry Uliman’s excellent PHP for the Web:
Visual QuickStart Guide, Fourth Edition
[Peachpit Press, 2011] for more informa-
tion on using PHP.) While it’s true that my
scripts are not very complicated, that’s
sort of the point. | was able to get them to
do what | needed without having to jump
through a lot of hoops.

PHP is suited for basic server-side Web
tasks as well as for such complex Web
applications as WordPress and Drupal,
which are popular blogging and content-
management systems. PHP is both an

Q continued

<table>
<tr><th>Field Name</th><th>Value(s)</thy</tr>

<?php
if (empty($_POST)) {

print "<p>No data was submitted.</p>";
} else {

foreach ($_POST as $key => $value) {
if (get_magic_quotes_gpc()) $value=stripslashes($value);
if ($key=='extras') {

if (is_array($_POST['extras'])){
print "<tr><td><code>$key</code></td><td>";
foreach ($_POST['extras'] as $value) {
print "<i>$value</i>
";
}
print "</td></tr>";
} else {
print "<tr><td><code>$key</code></td><td><i>$value</i></td></tr>\n";
}
} else {

print "<tr><td><code>$key</code></td><td><i>$value</i></td></tr>\n";

}
}
}
>
</table>
</body>
</html>

422 Chapter 16

J Processing Form Data

B c

Field Name
firet_name
last_name
email
password
password2
street address
eity
state
zip_code
picture
|CTAAN_Nama

web aite
bio
gender

wmail ok_msy_from users

Processing Form Data

S

> v (q-coo) [

Value(s)
Rose
Wood
rose.wood@testemail.com
pass1234
passi234
27 Carpenter Street
Maplewood
CA
92102
rose pic.jpq
ose1234
http:/fiwww.rosewood.com

My name is Rose Wood,
and I'm excited to be here.

fernale
on

email ok occasional updates ON

0 The script shown in

outputs the name and

values for each field in a table in the browser

window.

entry-level programming language and a
professional programming language. As
your skills grow, PHP can keep up!

In addition to being easy to learn, PHP has
a number of characteristics that make it
ideal for processing HTML forms. First of
all, PHP is an interpreted, or scripting, lan-
guage, which means that it does not need
to be compiled first. You write it, and off
you go. PHP scripts can be independent
text files, but they are often written right
inside the HTML page itself, making PHP
extremely convenient for Web designers.

Finally, because PHP was designed for the
Web, it’s good at the tasks that Web pages
require and coordinates well with HTML.
There are hundreds of built-in functions
that you can take advantage of. In this
chapter, we’ll touch briefly on PHP’s form-
processing tools. You can find PHP’s official
site at www.php.net.

Security

When you're sending information to the
server, you need to be very careful with
security. Never assume anything about
your data. Just because you built safe-
guards into your form doesn’t mean the
bad guys won’t create their own form

that calls your script in order to send out
millions of spam messages with it. Check
your data explicitly and make sure that it is
what it should be, with no extra bits lurking
about.

Alternatives to PHP

There are many alternatives to PHP for
processing forms, such as Microsoft’s
ASP.NET, Adobe’s ColdFusion, JSP
(JavaServer Pages), and Ruby on Rails.

Forms 423

www.php.net

Sending Form
Data via Email

If you don’t feel like messing with server-
side scripts and can deal with not having
your data perfectly formatted (or prepro-
cessed by a script), you can have a visitor’s
data sent to you via email @.

o Here is a script used to send form data via
email. You can find a commented version of this
script on the book’s Web site.

<body>

<?php
//This is a very simple PHP script that ...
if (empty($_POST)) {
print "<p>No data was submitted.</p>";
print "</body></html>";
exit();
}

function clear_user_input($value) {

if (get_magic_quotes_gpc())
$value=stripslashes($value);

$value= str_replace("\n", '',
trim($value));

$value= str_replace("\r", '',
$value);

return $value;

}

$body ="Here is the data that was
submitted:\n";

foreach ($_POST as $key => $value) {
$key = clear_user_input($key);
$value = clear_user_input($value);
if ($key=="extras') {

0 continued

if (is_array($_POST['extras'])){
$body .= "$key: ";
$counter =1;
foreach ($_POST['extras'] as
$value) {
//Add comma and space until
last element
if (sizeof($_POST['extras'])
== $counter) {
$body .= "$value\n";
break;}
else {
$body .= "$value, ";
$counter += 1;
}

}
} else {

$body .= "$key: $value\n";
}
} else {

$body .= "$key: $value\n";
}
}

extract($_POST);

$email = clear_user_input($email);

$first_name = clear_user_input
($first_name);

$from="'From: ‘. $email . "(" . $Ffirst_
name . ")" . "\r\n" . 'Bcc: yourmail@
yourdomain.com' . "\r\n";

$subject = 'New Profile from Web Site';

mail ('yourmail@yourdomain.com', $subject,
$body, $from);
7>

<p>Thanks for your signing up!</p>
</table>
</body>
</html>

code continues in next column

424 Chapter 16

Emailing a Form

First Name: Rose
Last Name: \Wood
Email: | rose.wood@restemail.com
Passward:

Re-enter Password:

Street Address: |27 Carpenter Street
City: Maplewood
State: California *

ZIP Code: 92102

4> y > (5 Q).
ACCOUNT

0 Except for an updated action field, this form is
identical to G in “Creating Forms.”

Emailing Form Data

Emailing Form Data |

4= || P ov| (29 coogiQ) | = -

Thanks for your signing up!

®

+ | 2

G It's always a good idea to give your visitor
feedback about what just happened.

New Profile from Web Sile Inbok

Rose rose wood@testemail com via ravens dreamhost com

Here is the data that was submitted:
firat_name: Rose

last_name. Wood

email: rose.wood@testemail.com
password: password

password?: password
street_address: 27 Campenter Street
cily: Maplewood

state: GA

zip_code: 82102

0 Here is the email that was received after the
form was submitted.

To send form data via email:
1. Type <form method="post".

2. Type action="emailform.php", where
emailform.php is the script that will
send the form data to your email.

3. Type>.

4. Create the form’s contents, as
described in the sections starting with
“Creating Text Boxes.”

5. Type </form>.

You might want to ask for the email
address to be entered twice. Then, have the
script compare the two fields and return an
error if they’re not identical. This validation
will prevent typos that keep you from receiv-
ing the form data.

You can find the code for this script on
the book’s Web site (www.bruceontheloose.
com/htmlcss/examples/). You are welcome to
use it on your own site.

If this script doesn’t work on your server,
it may be that your server doesn’t have PHP
installed. Contact your Web host and ask them
(or check their support pages).

Forms 425

www.bruceontheloose.com/htmlcss/examples/
www.bruceontheloose.com/htmlcss/examples/

L] -
OrgaI‘IZIng the o | have added styles to the fieldset element

and a class attribute to each h2 element to

Form Elements facilitate applying styles to each group of form
elements.
If you have a lot of information to fill out on <form method="post" action="showform.php">
a form, you can use a fieldset element to <fieldset>
group related elements and make the form <legend>Account</legend> </fieldset>
easier to follow @). The easier it is for your «fieldset>
- <legend class="address">Address
visitors to understand the form, the more
: - </legend>
likely they are to fill it out correctly. You can </fieldset>
also use the legend element to give each <fieldset>
fieldset a caption that describes the <legend class="public-profile">Public
purpose of each grouping @. Profile</legend>
</fieldset>

To organize the form elements:

0 | gave all the fieldset elements a margin, a

1. Below the form start tag but above
9 background color, and padding, along with special

any form elements that you wish to background colors for each heading.
have contained in the first group, type
<fieldset>. fieldset {
background-color: #fififa;
2. If desired, type <legend. border: none;

: . Wy . o u border-radius: 2px;
3. If desired, type align="direction", nargin-bottom: 12px;

where direction is left or right. overflow: hidden;

4. Type >.) padding: 0 10px;

5. Type the text for the legend.

legend {
6. Type </legend> to complete the background-color: #dedede;

legend. border-bottom: 1px solid #d4dada;

7. Create the form elements that belong border-top: 1px solid #d4d4ds;
border-radius: 5px;

in the first gr.oup. For.m(?re |nformat|on, box-shadow: 3px 3px 3px #ecc;
see the sections beginning with “Creat- color: #fff;
ing Text Boxes.” font-size: 1.1em;
. , margin: 12px;
8. Type </fieldset> to complete the first padding: 0.3em tem;
group of form elements. text-shadow: #9FBEB9 1px 1px 1px;

9. Repeat steps 1through 8 for each group text-transform: uppercase;

of form elements.

}

legend.account { background-color: #0B5586; }

legend.address { background-color: #4494C9; }

legend.public-profile { background-color:
#377087; }

legend.emails { background-color: #717F88; }

426 Chapter 16

Form Legends

Form Legends

')

Gotoa P v | (3~ coo@) | ¥ -

ACCOUNT

First Name:
Last Name:
Email:
Password:

Re-enter Password:

ADDRESS

Street Address:
City: |
State: | Alabama =

x

G Browsers limit our ability to style the 1egend
element. If you'd like greater control of its
formatting, instead use a heading or a p element
with a class name.

0 Because of most browsers’ lack of visual
control over the legend element, | recommend
using a regular heading element.

<form method="post" action="showform.php">
<fieldset>
<h2 class="account">Account</h2>

The legend element limits the power of
CSS to position it; this is the reason its styling
is limited in most browsers G | recommend
re-creating the legend effect with an aptly
styled p or h1-h6 element () through @).

Organizing your form into fieldset ele-
ments is optional.

G Here | style the 1egend h2 with a background,
a border, and other CSS3 features that you'll learn
about later.

h2 {
background-color: #dedede;
border-bottom: 1px solid #d4d4ds;
border-top: 1px solid #d4d4da;
border-radius: 5px;
box-shadow: 3px 3px 3px #ccc;
color: #fff;
font-size: 1.1lem;
margin: 12px;
padding: 0.3em lem;
text-shadow: #9FBEB9 1px 1px 1px;
text-transform: uppercase;

Creating a Form

4 i@ v Q) e

ACCOUNT

First Name:
Last Name:
Email:
Password:

Re-enler Password:

Sireet Address:

City:

o Now the legends have more styling options.

Forms 427

Creating Text Boxes

Text boxes can contain one line of freeform
text—that is, anything that the visitor wants
to type—and are typically used for names,
addresses, and the like.

There are many ways to separate your
form elements from each other. In these
examples, we are using unordered lists @),
but you can also use the div, p, or br ele-
ments to organize your form elements.

Creating a Form Lt

(<]] . ARt B o) .

ADDRESS
Street Address:

City:

State: | Alabama *

ZIP Code:
PUBLIC PROFILE
Piclure: Browse..
Mazimom sire af 700k PG, GIF PNG
Screen Mame;

hiah

0 Text boxes can be different sizes to
accommodate different types of fields. In our
example, we’re using CSS styles to set the width
with classes. You can also set the width with the
size="n" attribute on the HTML element.

New HTML5 Form Input Attributes

o While it’s essential to set the name attribute
for each text box, you only have to set the value
attribute when you want to add default values for
a text box.

<form method="post" action="showform.php">
<fieldset>
<h2 class="account">Account</h2>

<label for="first_name">First
Name:</label>
<input type="text" id="first_
name" name="first_name"
class="large" required=
"required" placeholder="Enter
your first name" />
</1i>

<label for="last_name">Last Name:
</label>
<input type="text" id="last_
name" name="last_name"
class="large"/>

</1i>

Forms is one area of HTML that most developers find painstaking, because it often requires extra
effort with CSS and JavaScript to make them function well. HTML5 has ventured to make this
easier by adding plenty of enhancements, many of which you can use today.

These attributes include autofocus, required, placeholder, maxlength, and pattern. In the
coming examples, you will learn about each of these features.

Older browsers that don’t support these newer features simply ignore the attribute. Many develop-
ers use JavaScript to bridge the gap in functionality for these browsers.

For more information about the state of HTML5 forms, along with browsers that support each fea-

ture, please visit http://wufoo.com/html5.

428 Chapter 16

http://wufoo.com/html5

T o

J 8 Creating a Form Ll =

a4,] |g r Web Site v | (8- ey e
First Name: I

Last Nam
Ema
Password:

Re-enter Password:

G Text boxes can be designated as required for
a form to submit. You can set a field as required
by adding the required or required="required"
attribute. This is a new feature in HTML5, so older
browsers will ignore it. You should still validate
your form on the server side, and you can add
JavaScript to check the field in the browser.

Creating a Form
¢ Go to a Web 5it | (M-GoogQ) | @ -
First Name: |Enter your first name
Last Name:
Email:
Password:

Re-enter Password:

0 Placeholders are a great way to give users a
hint or extra instructions for filling out the form.
The placeholder attribute will put text in a light
gray color inside your text box. When the user
begins to input text in the field, the light gray text
will disappear, and it will come back if the user
leaves the field without entering any information.
This is another new feature in HTML5, and older
browsers will simply ignore it.

To create a text box:

1

3.

4.

If desired, type the label that will
identify the text box to your visitor (for
example, Name:).

Type <input type="text".

Type name="label", where label is the
text that will identify the input data to
the server (and your script).

Type id="label", where label is the
text that will identify the element to

its matching label element, which |

will explain soon. It’s also used for
JavaScript to add functionality to your
form. Although it’s not required, many
programmers make the id and the name
identical.

If desired, type value="default", where
default is the data that will initially be
shown in the field and that will be sent
to the server if the visitor doesn’t type
something else.

If desired, type required="required”
to not allow the form to submit unless
the field has a value @.

If desired, type
placeholder="hinttext", where
hinttext is the data that will initially be
shown in the field to give instructions
to the user). When the input element
has focus, the text will disappear to
allow the user to type.

continues on next page

Forms 429

8. If desired, type autofocus="autofocus"
0. If it’s the first input element to have
this attribute, the input element will
by default have focus when the page
loads.

9. If desired, define the size of the box on
your form by typing size="n", where n
is the desired width of the box, mea-
sured in characters. You can also use
CSS to set the width on an input box.

10. If desired, type maxlength="n", where
n is the maximum number of characters
that can be entered in the box.

11. Finish the text box by typing a final /5.

Even if your visitor skips the field (and
you haven’t set the default text with the value
attribute), the name attribute is still sent to the
server (with an undefined, empty value).

The default for size is 20. However,
visitors can type up to the limit imposed by the
maxlength attribute. Still, for larger, multi-line
entries, it’s better to use text areas.

Don’t confuse the placeholder attri-
bute with the value attribute. They both have
text appear in the text box by default, but the
placeholder text will disappear on its own
and will not be sent to the server; the value
will not disappear when the input has focus,
and that content will be sent to the server.

G When your page loads, it’'s helpful to have

the focus on a field automatically so the user can
begin typing right away. Use the autofocus=
"autofocus" attribute to have the browser put the
cursor in the first form element.

<input type="text" id="first_name" name=
"first_name" class="large" required=
"required" placeholder="Enter your first
name" autofocus="autofocus" />

430 Chapter 16

o The password attribute identifies the password
when you compile the data. The id attribute is
used for styling and for reference to the label. The
type attribute must be password, but the id and
name can have any values as long as they don’t
have spaces.

<label for="password">Password:</label>
<input type="password" id="password"
name="password" />
</1i>

<label for="password">Re-enter Password:
</label>
<input type="password" id="password2"
name="password2" />

</1i>/>

Creating a Form

Creating a Form | =

(ot Go to a Web Site v (M- Q) (@ -

First Name: Ropse
Last Name: ‘Wood
Email: ' rose.wood@testemail.com
Password: ssssssss

Re-enter Password: ssssssss

0 When the visitor enters a password in a form,
the password is hidden with bullets or asterisks.

Creating Password
Boxes

The only difference between a password
box and a text box is that whatever is typed
in the former is hidden by bullets or aster-
isks @. The information is not encrypted
when sent to the server.

To create a password box:

1. Type a label to identify the password
box to your visitor (for example, <label
for="label"> Password</label>),
where label matches the label in step
4. You will learn about labels in the
“Labeling Form Parts” section.

2. Type <input type="password".

3. Type name="label", where label is the
text that will identify the input data to
the server (and your script).

4. Type id="label", where label is the
text that will identify the input field to its
label and JavaScript.

5. If desired, type required="required"
to ensure that the form will not submit
unless this field has a value.

6. Define the a form box’s size by typing
size="n", where n is the width of the
box, measured in characters.

7. Type maxlength="n", where nis the
maximum character count.

8. Finish the text box by typing a final /5.

Even if nothing is entered in the pass-
word box, the name is still sent to the server
(with an undefined value).

A password box only keeps onlookers
from seeing a user’s password as it’s typed.
To really protect passwords, use a secure
server (https://).

Forms 431

Creating Email,
Telephone, and
URL Boxes

The email, telephone, and URL input types
are new to HTML5. They look exactly like
text boxes but have small but very helpful
features added for validation and inputting
content (@) through @). Support for these
new fields is growing, and older browsers
will treat these fields as text boxes @).

To create email, URL, and
telephone boxes:

1. If desired, type the label that will iden-
tify the box to your visitor (for example,
<label for="idlabel">Email</labely),
where idlabel matches the idlabel in
step 4. You will learn about labels in the
next section.

2. Type <input type="email" /> for an
email box, <input type="url" /> for a
URL box, or <input type="tel" /> for a
telephone box.

[eoa Creating a Farm
1 Creating a Form (BT =
T T 0 D
First Name: Enter vour first nam

Last Nama:

Email: |(exr|ha(is not an emall I

e kIS heen

0 When the visitor enters text into the Email field,
the browser will check to make sure the format is
valid for emails. An empty field will pass validation
unless you add the required attribute.

[ean Croating a Form
Creasing a Form Ll -
R o et i 0 (D
First Mame: Enter your first name

Last Name:

Email

Wab: lwww.cnn.con{ I

@ B0g7 Put the BOTeLS heve.

Phol

Create Acdunt

0 When the visitor enters text into the Web field,
the browser will check to make sure the format

is valid for a URL. Notice that www.cnn.com is

not a valid URL, because a URL must begin with
http:// or https://. This is a good place to use a
placeholder to help the visitor.

432 Chapter 16

www.cnn.com

[epo Croating a Form.
Creating & Farm ["
A o 5 T
First Name:

Last Name:

Email

Web:

Have 8 homepage or 3 Siog? Pt the addreas b,

Phone: | 123-555-55

G When the visitor enters text into the Phone
field, the browser will check to make sure the
format matches the regular expression in the
pattern field, with the format XXX-XXX-XXXX.
Also, this field is handy in Safari on iOS, because it
will bring up the number keyboard instead of the
normal gwerty format.

0 The type attribute identifies the email, URL,
and telephone boxes. The pattern attribute is for
custom validation. It uses regular expressions to
restrict the content that a user puts into the box.
Don’t worry about the unusual syntax of regular
expressions; you can find common ones at http://
htmI5pattern.com.

<label for="email">Email:</label>
<input type="email" id="email"
name="email" class="large" />
</1i>

<label for="web_site">Web:</label>
<input type="url" id="web_site"
name="web_site" class="large" />
<p class="instructions">Have a homepage
or a blog? Put the address here.</p>
</1i>

<label for="phone">Phone:</label>
<input type="tel" id="phone"
name="phone" placeholder=
"xxx-xxx-xxxx" class="large"
pattern="\d{3}-\d{3}-\d{4}" />
</1i>

3. Type name="label", where label is the
text that will identify the input data to
the server (and your script).

4. Type id="idlabel", where idlabel is
the text that will identify the input field
to its label and JavaScript.

5. If desired, type required="required"
to ensure the form will not submit
unless this field has a value.

6. If desired, type pattern="regex",
where regex is the regular expression
that limits the text entered into the input
box to a specific format.

7. If desired, define the size of the box on
your form by typing size="n", where n
is the desired width of the box, mea-
sured in characters.

8. If desired, type maxlength="n", where
n is the maximum number of characters
that can be entered in the box.

9. Finish the input box by typing a final /5.

Regular expressions are outside the
scope of this book, but there are many
resources on the Web for finding patterns. Be
sure to clearly state to the user what pattern
you want them to follow. If you’re not careful,
visitors might give up and never submit the
form. Don’t let this happen!

Forms 433

http://html5pattern.com
http://html5pattern.com

Labeling Form Parts

HTML provides a method for marking up
labels so that you can formally link them to
the associated element and use them for
scripting or other purposes. In the exam-
ples so far, you’'ve seen that the explana-
tory information for each form element is
inside a 1label element with a for attribute.

For example, you might have “First Name:”
before the text field where the visitor
should type his or her first name @.

Placeholders are sometimes incorrectly
used as a replacement for the 1label. Be
sure to use the placeholder as a hint only.

To formally label form parts:
1. Type <label.

2. If desired, type for="idname">, where
idname is the value of the id attribute in
the corresponding form element.

3. Type the contents of the label.
4. Type </label>.

o Marking field labels in a formal way gives you
an easy way to identify them in a CSS style sheet.
If you use the for attribute in the label, the value
must match the id attribute of the form element.

<fieldset>
<h2 class="account">Account</h2>

<label for="first name">First
Name:</label>
<input type="text" id="first_
name" name="first name"
class="large" />
</1i>

<label for="last_name">Last Name:
</label>
<input type="text" id="last_
name" name="last_name"
class="large"/>
</1i>

</fieldset>

434 Chapter 16

o Styling field labels is a great way to make your
form more beautiful and user friendly.

label {
display: inline-block;
padding: 3px 6px;
text-align: right;
width: 150px;
vertical-align: top;

}

(s NN Creating a Form
J Creating a Form I +_l =
(e @[] Gotoawebsite B v (3§~ GooQ)1~

Gender: Male @ Female

& It is okay to email me with messages from othe

It is okay to email me with oceasional promotior
products.

x

G Labels for radio buttons and checkboxes allow
the user to click the label as well as the form
element to modify the state.

If you use the for attribute, you must
also add the id attribute to the associated
form element’s start tag in order to mark it
with a 1abel. (Otherwise, the document will
not validate.)

If you omit the for attribute, no id attri-
bute is required in the element being labeled.
The label and the element, in that case, are
then associated by proximity or perhaps by
being placed in a common 1i element.

Another labeling technique is to use the
title attribute. For more information, consult
“Adding the Title Attribute to Elements” in
Chapter 3. The placeholder attribute, how-
ever, is not a sufficient replacement for a label.

You can use CSS to format your labels .

Forms 435

Creating Radio
Buttons

Remember those old-time car radios with
big black plastic buttons—push one to
listen to WFCR; push another for WRNX?
You can never push two buttons at once.
Radio buttons on forms work the same way
(except you can't listen to the radio).

To create radio buttons:

1. If desired, type the introductory text
for your radio buttons. You might use
something like Select one of the
following.

2. Type <input type="radio"

3. Type name="radioset", where
radioset identifies the data sent to the
script and also links the radio buttons
together, ensuring that only one per set
can be selected.

4. Type id="id", where id identifies the
unique radio button that you link to
the label. Unlike the name value, which
must be the same for all radio buttons
in a set, the id for each element on the
page must be unique.

o The name attribute serves a dual purpose for
radio buttons: It links the radio buttons in a given
set, and it identifies the value when it is sent to
the script. The value attribute is crucial, since the
visitor has no way of typing a value for a radio
button.

<fieldset class="radios">

<input type="radio" id="gender_male"
name="gender" value="male" />
<label for="gender_male">Male</label>
</1i>

<input type="radio" id="gender_
female" name="gender" value=
"female" />
<label for="gender_female">Female
</label>
</1i>

</fieldset>

436 Chapter 16

0 This CSS sets the unordered list to display

its list items horizontally. The labels have a right
margin of 25 pixels to separate the radio button/

label pair.

.radios {
background: none;
display: inline;
margin: 0;
padding: 0;

}

.radios ul {
border: none;
display: inline-block;
list-style: none;
margin: 0;
padding: 0;

}

.radios 1i {
margin: 0;
display: inline-block;

.radios label {
margin-right: 25px;
width: auto;

}

.radios input {
margin-top: 3px;
}

Creating a Form +

c Neb Site v |29 Q) = -

Bio:

Gender: ‘*/ Male Female

0 The radio buttons themselves are created with

the HTML input elements. The labels (Male and

Female) are label elements; clicking the label will

select the corresponding radio button.

. Type value="data", where data is the

text that will be sent to the server if
the radio button is selected, either by
you @ or by the visitor.

. If desired, type checked="checked" to

make the radio button active by default
when the page is opened. You can do
this to only one radio button in the set.
(The ="checked" is optional in HTML.)

Type the final /5.

8. Type <label for="id">radio label

</label> where id matches the id
value in your radio button, and radio
label identifies the radio button to the
visitor. This is often the same as value,
but it doesn’t have to be.

. Repeat steps 2 through 8 for each radio

button in the set.

If you don’t set the value attribute, the
word “on” is sent to the script. It’s not particu-
larly useful, since you can’t tell which button in
the set was pressed.

Forms 437

Creating Select Boxes

Select boxes are perfect for offering
your visitors a choice from a given set of
options. They are most often rendered
as drop-down lists. If you give the user
the option to select multiple answers, the
select box will render as a box of items
with a scroll bar @.

To create select boxes:

1. If desired, type the text that will
describe your menu.

2. Type <select.

3. Type name="label", where label will
identify the data collected from the
menu when it is sent to the server.

4. Type id="idlabel", where idlabel is
the text that will identify the input field
to its label and JavaScript.

5. If desired, type size="n", where n rep-

resents the height (in lines) of the select

box.

6. If desired, type multiple="multiple"
to allow your visitor to select more than
one menu option (with the Control key
or the Command key).

7. Type>.
8. Type <option.

9. If desired, type selected="selected"
to specify that the option be selected
by default.

10. Type value="label", where label
identifies the data that will be sent to
the server if the option is selected.

11. If desired, type label="menu option",
where menu option is the word that
should appear in the menu.

12. Type ».

o Select boxes are made up of two HTML
elements: select and option. You set the
common name attribute in the select element,
and you set the value attribute in each of the
option elements.

<label for="state">State:</label>

<select id="state" name="state">
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>

</select>

0 We’ll use CSS again to adjust the font size. You
can adjust the width, color, and other attributes
using CSS, but each browser displays drop-down
lists slightly differently.

select {
font-size: 100%;
}
200 Creating a Form

‘]] Creating a Form H + =
el P v [(4F- CooQ J [|]

Street Address:

City:

State:

ZIP Code:

California

x

G A visitor will not be able to not make a
selection in a menu unless you set the size
attribute. The default selection is either the first
option in the menu or the one you've set as
selected in the HTML.

438 Chapter 16

0 Each sub-menu has a title, specified in the
label attribute of the optgroup start tag, and a
series of options (defined with option elements
and regular text).

<label for="referral">Where did you find out
about us?</label>
<select id="referral" name="referral">
<optgroup label="On-line">
<option value="social network">Social
Network</option>
<option value="search_engine">Search
Engine</option>
</optgroup>
<optgroup label="Off-line">
<option value="postcard">Postcard
</option>
<option value="word_of mouth">Word of
Mouth</option>
</optgroup>
</select>

260 Creating a Form with an aptgroup

1551 - '

_J "} Creating a Form with an opigroup

(@l | coto s web site B v J(3]- Goc

Where did you find | Social Network ¢ |

out about us? |\ Op-line

Social Nerwork
Search Engine

n Off-line
Post Card

Person

»

G Browsers generally don’t create true sub-

menus, but rather group the items in a single menu

with sub-groups.

13. Type the option name as you wish it to

appear in the menu.

14. Type </option>.

15. Repeat steps 8 through 14 for each

option.

16. Type </select>.

If you have a particularly large menu with
many options, you may want to group the
options into categories.

To group select box options:

1.

Create a select box as described in “To
create select boxes.”

Before the first option element

in the first group that you wish to
place together in a sub-menu, type
<optgroup.

Type label="submenutitle">, where
submenutitle is the header for the
sub-menu.

After the last option element in the
group, type </optgroup>.

Repeat steps 2 through 4 for each
sub-menu.

If you add the size attribute, the select
box appears more like a list, and there is no
automatically selected option (unless you use
selected).

If size is bigger than the number of
options, visitors can deselect all values by
clicking in the empty space.

Forms 439

Creating Checkboxes

Whereas radio buttons can accept only
one answer per set, a visitor can select as
many checkboxes in a set as they like. Like
radio buttons, checkboxes are linked by
the value of the name attribute.

To create checkboxes:

1. If desired, type the introductory text
(something like Select one or more of
the following) for your checkboxes.

2. Type <input type="checkbox".

3. Type name="boxset", where boxset
identifies the data sent to the script and
also links the checkboxes together.

4. Type value="data", where data is the
text that will be sent to the server if the
checkbox is marked (either by the visi-
tor, or by you as described in @)).

5. Type checked="checked" to make the
checkbox selected by default when the
page opens. You (or the visitor) may
select as many checkboxes as desired.
(The ="checked" is optional in HTML.)

6. Type /> to complete the checkbox.

7. Type <label for="id">checkbox
label</label>, where id matches the
id value in your checkbox element, and
checkbox label identifies the checkbox
to the visitor. This is often the same as
value, but it doesn’t have to be.

8. Repeat steps 2 through 7 for each
checkbox in the set.

If you use PHP, you can automatically
create an array (called $_POST['boxset'])
out of the checkbox values by using name=
"boxset[1" in I, where boxset identifies
the data sent to the script.

o Notice that the label text (not highlighted)

does not need to match the value attribute. That’s
because the label text identifies the checkboxes

to the visitor in the browser, whereas the value
identifies the data to the script. The empty brackets
are for PHP (see the tip).

<ul class="checkboxes">

<input type="checkbox" id="email_
ok_msg_from_users" name="email_
signup[]" value="user_emails" />
<label for="email ok_msg from_ users">
It is okay to email me with
messages from other users.</label>
</1i>

<input type="checkbox"
id="email_ok_occasional_
updates” name="email_signup[]"
value="occasional_updates” />
<label for="email_ok_occasional_
updates">It is okay to email me
with occasional promotions about
our other products.</label>
</1i>

0 For checkboxes, it is often the case that you
need to style the label differently, since it comes
after the input form element.

.checkboxes label {
text-align: left;
width: 475px;

Crasting s Fam L+

Gender: Male Female

1L it whity o ernail me with (ressagas ronm offer sers,

Itis ok to email me with cocasional pramotions about cur other
products.

G The visitor can select as many boxes as neces-
sary. Each corresponding value will be sent to the
script, along with the name of the checkbox set.

440 Chapter 16

o The value attribute is not used with the
textarea element. Default values are set by
adding text between the start and end tags.

<label for="bio">Bio:</label>
<textarea id="bio" name="bio" rows="8"
cols="50" class="large"></textarea>

0 The font properties do not always inherit
by default, so you must explicitly set them for
textarea.

textarea { font: inherit; width: 250px; }

Creating a Form

Creating a Form
¢ CotoaWebSite B v | (2~ CooQ) [# -
Screen Name:

Web:

Have a hemepage or a blog? Put the address here.

Bio: My name |s Rose.

0 The visitor can type many lines of text right into
the box.

Creating Text Areas

If you want to give visitors room to write
questions or comments, use text areas.
They will expand as needed @.

To create text areas:

1. If desired, type the explanatory text that
will identify the text area.

2. Type <textarea.

3. Type name="label", where label is the
text that will identify the input data to
the server (and your script).

4. |f desired, type maxlength="n", where
n is the maximum number of characters
that can be entered in the box. This
attribute is new to textareas in HTMLD5,
so its behavior varies across browsers
(http://wufoo.com/htmli5/attributes/
03-maxlength.html).

5. Type rows="n", where n is the height of
the text area in rows.

6. Type cols="n", where n is the width of
the text area in characters.

7. Type>.

®

Type the default text, if any, for the text
area.

9. Type </textarea> to complete the text
area.

There is no use for the value attribute
with text areas. The value instead is the
text that appears between the start and end
textarea tags.

Visitors can enter up to 32,700 charac-
ters in a text area. Scroll bars will appear when
necessary.

A better way to set the height and width
for a textarea is to use CSS.

Forms 441

http://wufoo.com/html5/attributes/03-maxlength.html
http://wufoo.com/html5/attributes/03-maxlength.html

Allowing Visitors
to Upload Files

Sometimes you might want your users to
upload a file, such as a photograph or a
résumé, to your server.

To allow visitors to upload files:

1. Type <form method="post" enctype=
"multipart/form-data”. The enctype
attribute ensures that the file is
uploaded in the proper format.

2. Next, type action="upload.url">,
where upload.url is the URL of the
script that processes incoming files.
You’ll need a special script for this.

3. Type the label for the file upload area
so your visitors know what to upload.
Something like <label for="picture">
Picture:</label> is common.

4. Type <input type="file" to create a
file upload box and a Browse button @.

5. Type name="title", where title identi-
fies the files being uploaded.

6. Type id="label", where label identi-
fies the form element to its label and is
unique to the page.

7. If desired, type size="n", where n is the
width of the field in which the visitor will
enter the path and file name. You can
also use CSS to set the width.

8. Type the final /5.

9. Complete the form as usual, including
the submit button and </form> end tag.

You can’t use the get method for forms
that allow uploading.

Servers need to be properly configured
to store files before they can accept them.

o To allow visitors to upload files, you must set
the proper enctype attribute and create the input
type="file" element.

n

<form method="post" action="showform.php
enctype="multipart/form-data">

<label for="picture">Picture:</label>

<input type="file" id="picture" name=
"picture" />

<p class="instructions">Maximum size of 700k.
JPG, GIF, PNG.</p>

</formy

Creating a Form { L
(o] ta 2 Web 5it [l B Q) |we .
PUBLIC PROFILE
Picture: Browse...
Maximum size of 700K, JPG, GIE PNG.
Screen Name:

Web:

HAVE A NOMeNage or A iog? Pur the Address Ham.

0 The file upload area provides a way for the
user to select a file on their system.

442 Chapter 16

o When you create a hidden field, you use the
variables from your script to set the value of the
field to what the visitor originally entered.

Creating Hidden Fields

Hidden fields are used to store data in the

<form method="post" action="whatever.php">

<input type="hidden" name="name" value=
"¢?= $name >" />

<input type="submit" value="submit data" />

When to Use a Hidden Field?

Imagine you have a form and want to

be able to give your visitors a chance

to review what they’ve entered before
they submit it. Your processing script can
show them the submitted data and at
the same time create a form with hidden
fields containing the same data. If the
visitor wants to edit the data, they simply
go back. But if they want to submit the
data, the hidden fields will already be
filled out, saving them the task of enter-
ing the data again.

form without showing it to the visitor. You
can think of them as invisible text boxes.
They are often used by processing scripts
to store information gathered from an
earlier form so that it can be combined with
the present form’s data @).

To create hidden fields:
1. Type <input type="hidden".

2. Type name="label", where label is a
short description of the information to
be stored.

3. Type value="data", where data is the
information itself that is to be stored.
It is often a variable from the form pro-
cessing script

4. Type />.

It doesn’t matter where the hidden fields
are located in your form markup, because they
won’t be visible in the browser. As long as they
are within the start and end form tags, you’re
OK.

To create an element that will be submit-
ted with the rest of the data when the visitor
clicks the submit button but that is also visible
to the visitor, create a regular form element
and use the readonly attribute.

Forms 443

Creating a
Submit Button

None of the information that your visitors
enter will be any good to you unless they
send it to the server. You should always
create a submit button for your forms so
that the visitor can deliver the information
to you @. (You can also use images to
submit form data—see “To create a submit
button that has an image.”)

To create a submit button:
1. Type <input type="submit".

2. If desired, type value="submit
message", where submit message is
the text that will appear in the button.

3. Type the final /5.

To create a submit button
that has an image:

1. Type <button type="submit">.

2. Type the text, if any, that should appear
on the left side of the image in the
button.

3. Type <img src="image.url", where
image.url is the name of the image
that will appear on the button.

4. Type alt="alternate text", where
alternate text is what appears if the
image doesn’t.

5. If desired, add any other image
attributes.

6. Type /> to complete the image.

7. Type the text, if any, that should appear
on the right side of the image in the
button.

8. Type </button>.

o If you leave out the name attribute, the name/
value pair for the submit button will not be passed
to the script. Since you usually don’t need this
information, that’s a good thing.

<input type="submit" class="create profile"
value="Create Account">

0 | apply a background, font formatting, and
some CSS3 features to the submit button by using
a class.

.create_profile {
background-color: #DA820A;
border: none;
border-radius: 4px;
box-shadow: 2px 2px 2px #333;
cursor: pointer;
color: #fff;
margin: 12px;
padding: 8px;
text-shadow: 1px 1px Opx #CCC;

}
006 Creating a Form
J - Creating a Form u + | T
| < '—“| |§‘ I | ' [,".]' CooQ,)
= ITTS ORdAY 10 ETTIAIN e WI 1
It is okay to email me with o
products.
x

0 The submit button activates the script that
collects the data from the form. You can personal-
ize the button’s contents with the value attribute.
(The phrase Create Account would be clearer to
your visitors than the default text, Submit Query.)

444 Chapter 16

0 You can create a submit button that has
an image next to the text by using the button
element.

<button type="submit" class="create profile">
Create Account</button>

Creating a Form

L Creating a Form u_+ | -
G Cop v "." GoolQ TR
I T IUIS URAY WO BTN e Wit UChdsie |
products.

=

G The code for a submit button that has an image
is slightly more complicated, but it gives you more
control over composing and styling the element.

If you leave out the value attribute, the
submit button will be labeled Submit Query by
default.

The name/value pair for the submit
button is only sent to the script if you set the
name attribute. Therefore, if you omit the name
attribute, you won’t have to deal with the
extra, usually superfluous, submit data.

If you have multiple submit buttons, you
can give a name attribute and a value attri-
bute to each one so that your script can tell
which one was pressed.

You can also use the button element to
create a submit button without an image.

HTML5’s button element lets you
create prettier submit buttons, because you
can compose the button with other HTML
elements instead of just using a simple text
value. Please know that there are some
inconsistencies among browsers in how they
render these elements, so you will have to
work through them with lots of testing and
CSS workarounds if you want things perfectly
consistent.

Forms 445

Using an Image to
Submit a Form

You may use an image alone as an input
element to submit a form. Sometimes the
designer creates a button that is beyond
the capabilities of CSS3, even with its
fancy gradients, shadows, and rounded
corners @.

To use an image to submit a form:

1.

2.
3.

Create a PNG, GIF, or JPEG image.
Type <input type="image".

Type src="image.url", where image.
url is the location of the image on the
server.

Type alt="description", where
description is what will appear if the
image does not.

Type the final /> to finish the active
image definition for the form.

0 If you use an image, you don’t need a submit
button.

<input type="image" alt="Create Account"
src="blue-submit-button.png" />

Creating a Form

: Creating a Form |L+ o=
|| Gop v| (2§~ GooQ
=1} l'd‘Ur‘\'d’]f'[U'G'l‘l =3m s wWinrn W |
products.

A
N g

»

0 Use an image to submit a form when CSS isn’t
enough.

446 Chapter 16

o Here, | use JavaScript and the disabled
attribute to make the Other text area inaccessible
until the Other radio button is selected.

<input type="radio" name="how" value=
"facebook" id="facebook" onclick=
"document.getElementById('other_
description').disabled = true;" />
<label for="facebook">Facebook</label>
</1i>

<input type="radio" name="how" value=
"other" id="other" onclick="document.
getElementById('other_description').
disabled = false;" />
<label for="other">Other</label>
</1i>

<textarea id="other_description”
disabled="disabled"></textarea>
</1i>

Enabling a disabled form element

o 1 a Web Sit Pov|(29-0oeQ) W -

How did you hear about us?

Advertisement

Email Newsletter
+ Facebook

Other

0 When the Other radio button is not
selected, the text area is grayed out and
disabled, so the user cannot select the
box and enter text.

Disabling Form
Elements

In some cases, you may not want visitors to
use certain parts of your form. For exam-
ple, you might want to disable a submit
button until all the required fields have
been filled out €).

To disable a form element:

In the form element’s tag, type
disabled="disabled" (or simply disabled
since either is fine).

You can change the contents of a
disabled form element with a script. You’ll
also need some JavaScript expertise. The
very simplistic way I’ve handled it here is

to add onclick="document.getElement
ById('other_description').disabled =
false;" to each radio button. This enables
or disables the text area, depending on which
radio button is selected. This is just a demo;
it is bad practice to mix your JavaScript with
your HTML as in O See Christian Heilmann’s
www.onlinetools.org/articles/unobtrusive
javascript/ for the proper approach.

Ba8 Enahbling a disabled form element
J Enabling a disabled form element I + "
wxlel to a Web Si P v | (- coo@) 48

How did you hear about us?

Advertisement
Email Newsletter
Facebook

= Other

Magazing

L]

@ When the visitor chooses the Other
radio button, the text area turns white and
the user can enter text to be submitted to
the server—thanks to the JavaScript.

Forms 447

www.onlinetools.org/articles/unobtrusivejavascript/
www.onlinetools.org/articles/unobtrusivejavascript/

New HTML5 Features
and Browser Support

HTML5 has many new features that make
creating and using forms easier, and we’ve
seen some of these features already. The
new specification introduces a lot of new
functionality, with new form elements, attri-
butes, input types, validation handling, and
styling capabilities.

There are more features that are still not
widely supported or whose implementa-
tion is incomplete. In some cases, even the
specification from the W3C is not finished.

Since the older browsers don’t support
these new capabilities, you have to know
what to do as a fallback option so you can
use these features today.

For instance, you can use a new form
element called output that is now widely
supported. It's used to show calculations
from other form elements. For instance,
if you have a shopping cart and change
the number of items you want to buy, the
output element could show the revised
total for your order. This element is often
used with JavaScript.

For a complete list of these new fea-
tures and their levels of support in vari-
ous browsers, please visit Wufoo’s site
The Current State of HTML5 Forms

at http://wufoo.com/html5/.

448 Chapter 16

http://wufoo.com/html5/

Video, Audio, and
Other Multimedia

One of the things that has made the Web
so popular is that you can add graphics,
sound, animations, and movies to your
Web pages. Although in the past the
prohibitive size of such files limited their
effectiveness, newer technologies like
streaming audio and video, along with
broadband Internet connections, have
opened the door for multimedia Web
pages.

Some of those multimedia Web pages
may serve as a base for an audio or video
podcast; others may be advertisements or
interactive displays. Still other Web pages
may take advantage of occasional multi-
media files to provide a richer experience
to their visitors. I'll show you how to add
multimedia to your Web pages for all these
purposes and more.

Prior to HTMLS5, the only method of add-
ing multimedia to your Web pages was
through third-party plugins such as Adobe
Flash Player or Apple’s QuickTime. HTML5
changes all that with the introduction of
native multimedia—where the browser
takes care of it all.

In This Chapter

Adding a Single Video to Your Web Page 453
Adding Controls and Autoplay to

Your Video 455
Preventing a Video from Preloading 458
Adding Video with Hyperlink Fallbacks 461
Adding Video with Flash Fallbacks 463
Providing Accessibility 467
Adding a Single Audio File to Your

Web Page 469
Adding Controls and Autoplay to

Audio in a Loop 472
Preloading an Audio File 473
Adding Audio with Hyperlink Fallbacks 475
Adding Audio with Flash Fallbacks 476
Adding Audio with Flash and a

Hyperlink Fallback 478
Embedding Flash Animation 482
Using Video with Canvas 485

Because the Web population is so diverse,
it can sometimes be tricky ensuring that
all your visitors can view and hear the files
that you provide (or the largest number of
them possible). You need to think about
the file format necessary for viewing or
listening. The fact that the developers of
multimedia technologies can’t seem to
agree on standards makes it a bit more
complicated.

Please note that this chapter is meant to
be an introduction to multimedia Web files,
with a strong emphasis on the HTML5
code you need. It does not teach you how
to create the multimedia content, only
how to make it available to your visitors.

450 Chapter 17

Third-Party Plugins
and Going Native

As mentioned, prior to the introduction of
HTMLS5, the only way to add media such
as audio and video to your Web page was
through a third-party plugin.

These third-party plugins can be a bit of a
black box, and you’re relying on the user to
actually have them installed. With some-
thing like Flash Player, it was quite likely
the user would have it installed, because it
has a wide market share and is installed on
a lot of user systems.

But there were problems. The code for
embedding a Flash video in one browser
didn’t necessarily work in another, and
there weren’t any elegant ways around

it. Plus, there was always a speed issue,
because the browser hands off the playing
of the media content to the plugin.

With such things in mind, native multimedia
was added to the HTML5 specification.
This brings a number of benefits: speed
(anything native to the browser is bound

to be quicker than a plugin), the native
controls are built into the browser, and the
reliance on plugins is drastically reduced
(but not entirely gone—as you’ll see later).

As with any set of standards, there are
issues with HTML5’s native multimedia

and the file formats it supports. Initially, the
HTMLS5 specification named two media
formats—one for audio and one for video—
that an HTML5-compatible browser must
support. This would have been very useful,
but not all vendors wanted to be told what
to do. Both Nokia and Apple disagreed
with the choice of mandatory media format,
and so the requirement was dropped from
the specification. This means that you
need to provide your media in more than
one format for it to be playable by HTML5-
capable browsers. We’'ll look at this in
detail later.

The usefulness of HTML5 and native media
was enhanced when Apple announced
that they were not going to support Flash
on their mobile devices, including iPhone
and iPad. With these devices becoming
more widespread every day, this showed
that the past reliance on Flash for playing
media files was fast disappearing and that
the need to provide a different solution
was at hand. This is where HTMLS5 native
multimedia steps in and shows its strength,
because the browser on Apple’s mobile
devices does indeed support HTML5.

Without further ado, let’s see how you can
go about adding native video to your Web
pages.

Video, Audio, and Other Multimedia 451

Video File Formats

There are a number of different video file
formats, or codecs, that are supported by
HTMLS5.

HTML5 supports three main video codecs.
Here are those three and the browsers that
support them:

Ogg Theora uses either the .ogg or
.ogv file extension and is supported by
Firefox 3.5+, Chrome 5+, and Opera
10.5+.

MP4 (H.264) uses the .mp4 or .m4v file
extension and is supported by Safari 3+,
Chrome 5-7?, Internet Explorer 9+, iOS,
and Android 2+.

WebM uses the .webm file extension
and is supported by Firefox 4+, Chrome
6+, Opera 11+, Internet Explorer 9+, and
Android 2.3+.

You need to provide your video in at

least two different formats—MP4 and WebM—

in order to ensure that all HTML5-compatible

browsers are supported. Which is not too bad!

Google will drop support for MP4 in an
upcoming release of Chrome, but they have
yet to confirm when that will be.

Converting between File Formats

What's a Codec?

A codec is a computer program that uses
a compression algorithm to encode and
decode a digital stream of data, making it
more suitable for playback.

The objective of the codec is usually to
try to maintain the highest audio and
video quality it can while aiming for a
smaller file size.

Of course, some codecs are better than
others at performing this.

Showing you how to create your own video resources is outside the scope of this chapter, but
should you already have a video resource and wish to convert it to any or all of the file formats
listed, there are a number of free tools that can help you with this. Here are two:

Miro Video Converter, at www.mirovideoconverter.com

HandBrake, at http://handbrake.fr

452 Chapter 17

www.mirovideoconverter.com
http://handbrake.fr

o Specifying a single WebM video with no
controls

<body>
<video src="paddle-steamer.webm"></video>
</body>

Adding a Single Video
to Your Web Page

In order to add a video to your Web page
in HTMLS, you need to use the new video
element. Doing so couldn’t be simpler).

To add a single video to
your Web page:

1. Obtain your video resource.

2. Type <video src="myVideo.ext">
</video>, where myVideo.ext is the
location, name, and extension of the
video file.

And that’s it!

Both Apple and Microsoft have taken
and twisted the idea of native multimedia. In
order for native multimedia to work on Safari
(and Chrome, since it’s also based on WebKit),
QuickTime must be installed on the user’s
device; Internet Explorer 9 requires Windows
Media Player to be installed. Such is life.

Video, Audio, and Other Multimedia 453

Exploring Video
Attributes

What other attributes can you use with
the video element? Let’s take a look at

Table 171.

As you can see, there are quite a number
of attributes, which gives you a lot of flex-
ibility with your video.

TABLE 17.1 Video Attributes

Attribute
src
autoplay
controls
muted
loop

poster

width
height
preload

Description

Specifies the URL to the video file.

Automatically starts playing the video as soon as it can.

Adds the browser’s default control set to the video.

Mutes the video’s audio (not currently supported by any browser).
Plays the video in a loop.

Specifies an image file to display (instead of the first frame of the video) when it loads.
Takes a URL to the required image file.

The width of the video in pixels.
The height of the video in pixels.

Hints to the browser how much of the video it is to load. It can take three different values:
none doesn’t load anything.

metadata loads only the video’s metadata (e.g., length and dimensions).

auto lets the browser decide what to do (this is the default setting).

454 Chapter 17

o Adding a single WebM video file, this time with
controls

<body>
<video src="paddle-steamer.webm"
controls="controls"></video>

</body>

Boolean Attributes

Boolean attributes, such as controls,
don’t need to have a value specified for
them, because their existence within the
media element is sufficient.

The examples in this book specify values
for these Boolean attributes, but the con-
trols in could also be written as

<video src="paddle-steamer.webm"
controls></video>.

Adding Controls
and Autoplay to
Your Video

So far, I've shown you the simplest pos-
sible method for adding video to your Web
page, and the video in that example will
not even start playing, because we haven't
told it to. Also, if the browser you view this
code sample in doesn’t support the video
file format you're using, then the browser
will display either an empty rectangle (at
300 x 150 if dimensions haven’t been
specified) or the poster image, if one is
indicated (via the poster attribute).

The short code sample in “Adding a Single
Video to Your Web Page” won’t add any
controls to the video, but you can do so
easily enough @.

The controls attribute informs the
browser to add a set of default controls
to the video.

continues on next page

Video, Audio, and Other Multimedia 455

Each browser has its own set of default
controls, which look very different from
each other (@ through @).

The following example illustrates how you
can use some of the video attributes from
Table 171 @.

To add controls to a video:

Type <video src="myVideo.ext"
controls="controls"></video>.

To add autoplay to a video:
1. Obtain your video source.

2. Type <video src="myVideo.ext"
autoplay="autoplay" controls=
"controls"></video>, where
myVideo.ext is the location, name,
and extension of the video file.

o The video controls in Internet Explorer 9

@ A single WebM video set to play automatically
on load

<body>
<video src="paddle-steamer.webm"
autoplay="autoplay" controls=
"controls"></video>
</body>

G The video controls in Opera

456 Chapter 17

o A single WebM video set to play automatically
and then loop

<body>
<video src="paddle-steamer.webm"
autoplay="autoplay" loop="loop">
</video>
</body>

0 A single WebM video with controls and a
specified poster image that will display when the
page loads and displays the video

<body>
<video src="paddle-steamer.webm"
poster="paddle-steamer-poster.jpg"
controls="controls"></video>
</body>

0 A video displaying a poster image. In this case,
the image is a screenshot taken from within the
video itself.

Looping a Video
and Specifying a
Poster Image

As well as setting your video to play
automatically, you can also set it to play
continuously until stopped @. (This isn’t
recommended, though—think of your
poor users!)

You simply use the autoplay and loop
attributes.

Note, however, that the loop attribute is
not supported by Firefox.

Normally, the browser will display the
first frame of the video on loading. You
may want to change this and specify
your own image, which you can do via
a poster image.

To add autoplay and loop a video:
1. Obtain your video source.

2. Type <video src="myVideo.ext"
autoplay="autoplay"” loop="loop">
</video>, where myVideo.ext is the
location, name, and extension of the
video file.

To specify a poster image for
avideo:

1. Obtain your video source.

2. Type <video src="myVideo.
ext" controls="controls"
poster="myPoster.jpg"></video>,
where myVideo.ext is the location,
name, and extension of the video file
and myPoster.jpg is the image that you
want to use as the poster image.

Video, Audio, and Other Multimedia 457

Preventing a Video o A single WebM video that won’t load when

the page fully loads. It won’t load until the user

from Preloading attempts to play it.

If you think it unlikely that a user will view <b0dy<>video src="paddle-steamer.webn”

your video (e.g., it's not the main content preload="none" controls="controls"s
on your page), you can ask the browser to </video>

not bother preloading it, which will save on </body>

bandwidth @.

To instruct the browser to
not preload a video:

1. Obtain your video source.

2. Type <video src="myVideo.ext"
preload="none" controls="controls">

eation s an extonion of the e
location, name, and extension of the

video file. 0 A video with preload set to none. As you can

see, nothing is being displayed, because the
browser has no information about the video (not
even the dimensions) and no poster image was
specified.

458 Chapter 17

o Two sources are defined here for the video:
an MP4 file and a WebM file. Older browsers will
only display the message contained within the p
element.

<body>
<video controls="controls">
<source src="paddle-steamer.mp4"
type="video/mp4">
<source src="paddle-steamer.webm"
type="video/webm">
<p>Sorry, your browser doesn’t
support the video element</p>
</video>
</body>

Using Video with
Multiple Sources

This is all great, but you’ll have noticed that
all the preceding examples use only one
video file, and therefore one format.

You've already seen that in order to sup-
port all HTML5-capable browsers, you
need to supply video in at least two differ-
ent formats: MP4 and WebM.

So how do you do that? This is where the
HTML5 souxce element comes in.

Basically, the source element allows you to
define more than one source for a media
element, in this case video.

Any number of source elements can be
contained within a video element, so
defining two different formats for our video
example is quite easy 0.

To specify two different
video sources:

1. Obtain your video sources (two this
time).

2. Type <video controls="controls">
to open the video element with the
default control set.

3. Type <source src="myVideo.mp4"
type="video/mp4">, where myVideo.mp4
is the name of the MP4 video source file.

4. Type <source src="myVideo.webm"
type="video/webm">, where
myVideo.webm is the name of the
WebM video source file.

5. Type <p>Sorry, your browser doesn't
support the video element</p> to dis-
play a message for browsers that don’t
support HTML5 video.

6. Type </video> to close the video
element.

Video, Audio, and Other Multimedia 459

Multiple Media
Sources and the
Source Element

We’ll go into the various attributes avail-
able for the source element in a moment,
but let’s first quickly look at why specifying
multiple sources for the same media actu-
ally works.

When the browser comes across the video
element, it first looks to see if there’s a

src defined in the video element itself.
Since there isn't, it then checks for source
elements. It goes through each one in turn
looking for one that contains something it
can play. Once it finds one, it plays it and
ignores the rest.

In our previous example, Safari will play the
MP4 file and won’t even see the WebM file,
whereas Firefox will note that it can’t play
the MP4 source and move on to the WebM
one, which it can play @.

Any browser that recognizes neither the
video element nor the source element
(that is, a browser that is not HTML5
capable) will ignore those tags entirely
when parsing the document; it will simply
display the text entered just before closing
the video element.

Let’s take a quick look at the sourxce ele-
ment attributes (Table 17.2).

If you specify a value in the sxc attribute
of the video element itself, it will auto-
matically override anything specified in any
source elements.

0 The video will load on all HTML5-capable
browsers because we have specified both
a WebM and MP4 source for it.

TABLE 17.2 Source Attributes

Name

Description

Ssrc

The URL to the video source.

type

Specifies the type of the video, which
aids the browser in deciding whether

it can play the video or not. As the
example in the “Using Video with
Multiple Sources” section shows,

the value of this attribute reflects the
format or codec of the video (e.g.,
video/mp4, video/webm, or video/ogg).

media

Allows you to specify a CSS3 media
query for the video source, thus
allowing you to specify different
(e.g., smaller) videos for devices with
different screen capabilities.

460 Chapter 17

o MP4 and WebM sources are specified for the
video, with older browsers displaying a download
link to the MP4 file.

<body>
<video controls="controls">
<source src="paddle-steamer.mp4"
type="video/mp4">
<source src="paddle-steamer.webm"
type="video/webm">

Download the video
</video>
</body>

Download the video

0 Internet Explorer 8 ignores the video and
source elements and simply displays the
download link.

Adding Video with
Hyperlink Fallbacks

Not all browsers will be able to play HTML5
video (such as Internet Explorer 8 and
below). A fallback solution is needed for
these browsers.

It may have already occurred to you that
the way the video and source elements
work together in the example in the previ-
ous section is ideal.

And you’d be right.

You can take advantage of the fact that
browsers that don’t understand the video
and source elements will simply ignore
them.

In that example, you added a text mes-
sage that would be displayed to visitors
using a browser that is not HTML5 capable.
You can replace that piece of text with a
standard hyperlink to the video, allowing
the user to download the file and view it at
their leisure.

In this example @, | have chosen to
include a download link to the MP4 version
of our video, but | could just as easily have
linked to the WebM file or even to both.

Video, Audio, and Other Multimedia 461

To add a hyperlink
fallback to a video:

1.
2.

Obtain your video sources.

Type <video controls="controls">
to open the video element with the
default control set.

Type <source src="myVideo.mp4"
type="video/mp4">, where myVideo.
mp4 is the name of the MP4 video
source file.

Type <source src="myVideo.webm"
type="video/webm, where myVideo.
webm is the name of the WebM video
source file.

Type Download
the video (Where myVideo.mp4 is
the name of the video source file) to
specify a fallback video file hyperlink
from which the user can download the
video.

Type </video> to close the video
element.

462 Chapter 17

o Browsers that don’t support HTML5 video will
revert to the Flash fallback player and play the
specified MP4 video file instead.

<body>
<video controls="controls">
<source src="paddle-steamer.mp4"
type="video/mp4">
<source src="paddle-steamer.webm"
type="video/webm">
<object type="application/
x-shockwave-flash" data=
"player.swf?videoUrl=paddle-
steamer.mp4&controls=true">
<param name="movie" value=
"player.swf?videoUrl=paddle-
steamer.mp4&controls=true" />
</object>
</video>
</body>

Flash Fallback Player

The Flash fallback player (player.swf)
that’s mentioned in the code snippets is
available with the downloadable code
accompanying this chapter. The player
itself is the excellent JW Player, from
LongTail Video (www.longtailvideo.com/
players/jw-flv-player).

Adding Video with
Flash Fallbacks

As well as providing a download link, you
could (and probably should) embed a
Flash fallback player that can play the MP4
video file.

Yes, I’'m afraid that despite all this great
work with HTML5 and native multimedia,
you still may want to resort to embedding
Flash content, just for those older brows-
ers that can’t cope. That said, you do want
to reach as many users as possible, so at
least there’s an option!

In the past, you could embed your Flash
fallback player and video into your Web
page using either the object element or
the embed element, but neither was strictly
valid HTML, because neither was in the
specification.

The HTML5 specification does contain the
embed and object elements, so at least
now they’re valid HTML.

We will use the object element here
because it offers a more complete solution,
as any content in the object element will
be rendered even if the browser doesn’t
support the plugin that the object ele-
ment specifies. This allows you to specify
another fallback, should it be required. A
fallback within a fallback!

| also recommend downloading an open
source Flash video player (such as JW
Player or Flowplayer), which makes it a lot
easier to embed your video in this way @.
It's ideal if the player can play MP4 files, so
you can re-use one of your existing video
source files; if not, you may have to convert
it to a SWF or FLV file.

Video, Audio, and Other Multimedia 463

www.longtailvideo.com/players/jw-flv-player
www.longtailvideo.com/players/jw-flv-player

To add a Flash fallback to a video:
1. Obtain your video files.

2. Type <video controls="controls">
to open the video element with the
default control set.

3. Type <source src="myVideo.mp4"
type="type/mpa">, where myVideo.mp4
is the name of the MP4 video source
file.

4. Type <source src="myVideo.webm"
type="video/webm">, where
myVideo.webm is the name of the
WebM video source file.

5. Type <object type="application/
x-shockwave-flash" data=
"player.swf?videoUrl=myVideo.mp4
&controls=true"> (Where myVideo.mp4
is the name of the MP4 video source
file) to specify that it’s a Flash fallback
player and to specify the player and
video file to use. Note that the param-
eters specified here are specific to
the player.swf used throughout this
chapter.

6. Type <param name="movie"
value="player.swf?videoUrl=
myVideo.mp4&controls=true" />
(where myVideo.mp4 is the name of
the video source file) to specify the
player and video for browsers that don’t
understand the information in the open-
ing object element definition. Note that
the parameters specified here are spe-
cific to the player.swf used throughout
this chapter.

7. Type </object> to close the object
element.

8. Type </video> to close the video
element.

0 Flash fallback player in Internet Explorer 8

<body>
<video controls="controls">
<source src="paddle-steamer.mp4"
type="video/mp4">
<source src="paddle-steamer.webm"
type="video/webm">
<object type="application/
x-shockwave-flash" data=
"player.swf?videoUrl=paddle-
steamer.mp4&controls=true">
<param name="movie" value=
"player.swf?videoUrl=paddle-
steamer.mp48controls=true" />
</object>

Download the video
</video>

</body>

464 Chapter 17

“ b [N] IHEI"I'SI] |——|
0 Browsers that don’t support HTML5 video
will revert to the Flash fallback player, which will
play the specified MP4 video file instead. The
download link will also be displayed, and browsers
that don’t have Flash installed will still offer this
option.

You could also add a video file download
link (as in an earlier example) after the
Flash object, just before closing the video
element. This would be an even further
fallback, allowing users to download the
video file @. However, the Flash fallback
player will be displayed alongside the
download link on browsers that don’t sup-
port HTMLS video.

To add Flash and a hyperlink
fallback to a video:

1. Obtain your video files.

2. Type <video controls="controls">
to open the video element with the
default control set.

3. Type <source src="myVideo.mp4"
type="type/mpa">, where myVideo.mp4
is the name of the MP4 video source
file.

4. Type <source src="myVideo.webm"
type="video/webm">, where
myVideo.webm is the name of the
WebM video source file.

5. Type <object type="application/
x-shockwave-flash" data=
"player.swf?videoUrl=myVideo.mp4
&controls=true"> (where myVideo.mp4
is the name of the video source file) to
specify the player and video file to use.
Note that the parameters specified here
are specific to the player.swf used
throughout this chapter.

6. Type <param name="movie" value=

"player.swf?videoUrl=myVideo.mp4
&controls=true" /> (where myVideo
.mp4 is the name of the video source
file) to specify the player and video for
browsers that don’t understand the
information in the opening object ele-
ment definition.

continues on next page

Video, Audio, and Other Multimedia 465

7. Type </object> to close the object
element.

8. Type Download
the video (where myVideo.mp4 is
the name of the video source file) to
specify a fallback video file download
hyperlink.

9. Type </video> to close the video
element.

If a browser supports HTML5 video but is
unable to find a file it can play, it will not revert
to the Flash fallback player).

An excellent resource on how to

make video available to everybody is

“Video for Everybody” by Kroc Camen
(http://camendesign.com/code/video_for_
everybody). It’s definitely worth checking out,
as is Jonathan Neal’s Video for Everybody
Generator (http://sandbox.thewikies.com/
vfe-generator/).

0 Firefox display (with default control set) when
it can’t find a video file it is able to play—it doesn’t
revert to the Flash fallback player or display the
download link.

466 Chapter 17

http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://sandbox.thewikies.com/vfe-generator/
http://sandbox.thewikies.com/vfe-generator/

Providing Accessibility

Another advantage of having native
multimedia is that the content can be
made more keyboard accessible by taking
advantage of the natural accessibility of
modern browsers.

Or so you’d think.

Opera is currently the only modern
browser whose default control set for
HTML5 media is keyboard accessible.

For the other browsers, the only way to
have an accessible media player is by cre-
ating your own control set, for which you
need the JavaScript Media API (also part
of HTML5), but that is outside the scope of
this chapter.

HTMLS5 also specifies a new file format that
allows you to include text subtitles, cap-
tions, descriptions, chapters, and so on in
video content.

The WebVTT (Web Video Text Tracks) file
format is intended for marking up external
text track resources, such as subtitles.

No browser supports this format just yet,
but there are a number of JavaScript librar-
ies (such as Playr and Captionator) that
you can use to harness WebVTT and its
functionality.

Further discussion of WebVTT and
captioning is outside the scope of this
chapter, but you can find out more at
www.iandevlin.com/blog/2011/05/htmI5/
webvtt-and-video-subtitles.

lan Devlin’s HTML5 Multimedia: Develop
and Design (Peachpit Press, 2011) has chap-
ters dedicated to showing you how to create
your own accessible control set and how to
use WebVTT.

Video, Audio, and Other Multimedia 467

www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles

Adding Audio
File Formats

Now that you can add video to your Web
page using HTML5 native media, let’s take
a look at how to add audio. As with HTML5
video, there are a number of different file
formats (codecs) that are supported.

There are five main audio codecs that you
can use. Here they are, along with the
browsers that support them:

m Ogg Vorbis uses the .ogg file exten-
sion and is supported by Firefox 3.5+,
Chrome 5+, and Opera 10.5+.

m MP3 uses the .mp3 file extension and
is supported by Safari 5+, Chrome 6+,
Internet Explorer 9+, and iOS.

= WAV uses the .wav file extension and
is supported by Firefox 3.6+, Safari 5+,
Chrome 8+, and Opera 10.5+.

m AAC uses the .aac file extension and
is supported by Safari 3+, Internet
Explorer 9+, iOS 3+, and Android 2+.

m MP4 uses the .mp4 extension and is sup-
ported by Safari 3+, Chrome 5+, Internet
Explorer 9+, iOS 3+, and Android 2+.

You will remember that MP4 was also listed
as a video codec, but it can also be used to
encode audio data only.

As with video, your content needs to

be in two different formats to ensure support

across all HTML5-capable browsers. The two

best formats in which to provide your content
are Ogg Vorbis and MP3.

The Miro Video Converter application
mentioned in the “Converting between File
Formats” sidebar can also be used for convert-
ing audio.

468 Chapter 17

o A simple Ogg-encoded audio file with no
controls

<body>
<audio src="piano.ogg"></audio>
</body>

Adding a Single Audio
File to Your Web Page

Let’s move on to actually placing an audio
file in your Web page. The process is very
similar to adding a video, but this time
you'll use the audio element .

To add a single audio file

to your Web page:

m Obtain your audio file.

m Type <audio src="myAudio.ext">
</audio>, where myAudio.ext is the

location, name, and extension of the
audio file.

Video, Audio, and Other Multimedia 469

Adding a Single Audio
File with Controls
to Your Web Page

As the preceding example showed, it’'s
quite easy to add a single audio file to your
Web page. But this doesn’t actually display
anything, since an audio file is not visual,
so you need to add some controls by using
the controls attribute).

To add a single audio file with
controls to your Web page:

1. Obtain your audio file.

2. Type <audio src="myAudio.ext"
controls="controls"></audio>.

Of course, as with the video controls, each
browser has its own idea of how these
controls should look (@ through @).

o A simple Ogg-encoded audio file with the
default control set specified

<body>
<audio src="piano.ogg" controls=
"controls"></audio>
</body>

> e 2 40|

0 The audio controls in Firefox

G The audio controls in Safari

0 The audio controls in Chrome

moofizz o))

G The audio controls in Opera

p 00:00:00 W 00:01:23 W) ee———p

0 The audio controls in Internet Explorer 9

470 Chapter17

TABLE 17.3 Audio Attributes

Name
src

autoplay

controls

muted

loop
preload

Description
Specifies the URL to the audio file.

Automatically starts playing the
audio as soon as it can.

Adds the browser’s default control
set to the audio.

Mutes the audio (not currently
supported by any browser).

Plays the audio in a loop.

Hints to the browser how much of
the audio it is to load. It can take
three different values:

none doesn’t load anything.

metadata loads only the audio’s
metadata (e.g., length).

auto lets the browser decide what
to do (this is the default setting).

Exploring Audio
Attributes

As with the video element, there are a
number of attributes that you can use
with the audio element. They are listed in
Table 17.3.

Video, Audio, and Other Multimedia 471

Adding Controls
and Autoplay to
Audio in a Loop

Using the controls and autoplay attri-
butes, adding controls and specifying that
the audio file is to start playing on load is
quite simple (@ and ©).

You can also indicate that you want the
audio to play in a loop by using the loop
attribute @.

To add controls to an audio
file and to start the audio
playing automatically:

1. Obtain your audio file.

2. Type <audio src="myAudio.ext"
autoplay="autoplay" controls=
"controls"></audio>, where
myAudio.ext is the location, name,
and extension of the audio file.

To play an audio file in a loop:
1. Obtain your audio file.

2. Type <audio src="myAudio.ext"
loop="loop" controls="controls">
</audio>, where myAudio.ext is the
location, name, and extension of the
audio file.

Firefox doesn’t support the loop
attribute.

Just because you can play audio auto-
matically and in a loop doesn’t mean that you
should.

o An Ogg audio file (with the default control set)
that will automatically start playing when the page
loads

<body>
<audio src="piano.ogg" autoplay=
"autoplay" controls="controls">
</audio>
</body>

=

0 An audio file (with controls) that began to play
automatically on load

G An Ogg audio file (with the default control set)
that will loop

<body>
<audio src="piano.ogg" loop="loop"
controls="controls"></audio>
</body>

472 Chapter 17

o This Ogg audio file should have only its
metadata (e.g., length) loaded when the page
loads.

<body>
<audio src="piano.ogg" preload=
"metadata” controls="controls">
</audio>
</body>

0 This Ogg audio file allows the browser to
decide for itself how much of the file to load.

<body>

controls="controls"></audio>
</body>

<audio src="piano.ogg" preload="auto"

Preloading an
Audio File

You can request that the browser preload
the audio file in different ways by using
the different audio element attributes

(@ and @) in Table 17.3.

To ask the browser to preload
only the audio’s metadata:

1. Obtain your audio file.

2. Type <audio src="myAudio.
ext" preload="metadata"
controls="controls"></audio>, where
myAudio.ext is the location, name, and
extension of the audio file.

To ask the browser to decide
how to preload the audio file:

1. Obtain your audio file.

2. Type <audio src="myAudio.
ext" preload="auto"
controls="controls"></audio>, where
myAudio.ext is the location, name, and
extension of the audio file.

Specifying a value for the preload
attribute does not guarantee the browser’s
behavior; it’s merely a request.

Specifying that the audio file play auto-
matically via the autoplay attribute overrides
any preload attribute setting, because the
audio file must load in order to play.

Video, Audio, and Other Multimedia 473

Providing Multiple
Audio Sources

As mentioned, in order to support all
HTML5-capable browsers, you need to
provide your audio in more than one for-
mat. This is achieved in exactly the same
way as it is with the video element: using
the source element @.

The whole process works in the same way
as specifying multiple video source files.
The browser ignores what it can’t play and
plays what it can.

To specify two different
audio sources:

1. Obtain your audio files.

2. Type <audio controls="controls">
to open the audio element with the
default control set.

3. Type <source src="myAudio.ogg"
type="audio/ogg">, where myAudio.
ogg is the location, name, and exten-
sion of the Ogg Vorbis audio file.

4. Type <source src="myAudio.mp3"
type="audio/mp3">, where myAudio.

mp3 is the location, name, and extension

of the MP3 audio file.

5. Type </audio> to close the audio
element.

The type attribute helps the browser
decide whether it can play the source file.

For audio formats, the value is always audio/
followed by the format itself: audio/ogg,
audio/mp3, audio/aac, audio/wav, and
audio/mp4.

o Two audio sources are defined for this audio
element (which also has a default control set
defined): one encoded as Ogg and the other

as MP3.

<body>
<audio controls="controls">
<source src="piano.ogg" type=
"audio/ogg">
<source src="piano.mp3" type=
"audio/mp3">
</audio>

</body>

474 Chapter 17

o Two audio sources are defined for this audio
element, and browsers that are not HTML5
capable will simply display the hyperlink to the
downloadable MP3 version of the audio file.

<body>
<audio controls="controls">
<source src="piano.ogg" type=
"audio/ogg">
<source src="piano.mp3" type=
"audio/mp3">
Download the
audio
</audio>
</body>

Adding Audio with
Hyperlink Fallbacks

At the risk of repeating myself, the fallback
method for audio works exactly the same
way as it does for video.

You define your multiple sources using
the audio and source elements, and then
you add the fallback for browsers that are
not HTML5 capable before you close the
audio element @.

To add a hyperlink fallback
to your audio:

1.

2.

Obtain your audio files.

Type <audio controls="controls">
to open the audio element with the
default control set.

Type <source src="myAudio.ogg"
type="audio/ogg">, where myAudio.
ogg is the location, name, and exten-
sion of the Ogg Vorbis audio file.

Type <source src="myAudio.mp3"
type="audio/mp3">, where myAudio.
mp3 is the location, name, and extension
of the MP3 audio file.

Type Download
the audio (where myAudio.mp3 is
the location, name, and extension of the
MP3 audio file) to provide a hyperlink
audio download for browsers that are
not HTML5 capable.

Type </audio> to close the audio
element.

Video, Audio, and Other Multimedia 475

Adding Audio with
Flash Fallbacks

Just as with video, Flash is often the plugin
of choice for embedding audio content.
And again, just as with video, you can
provide a Flash fallback player for brows-
ers that are not HTML5 capable, such as
Internet Explorer 8.

To provide a Flash fallback
for your audio:

1. Obtain your audio files.

2. Type <audio controls="controls">
to open the audio element with the
default control set.

3. Type <source src="myAudio.ogg"
type="audio/ogg, where myAudio.ogg
is the location, name, and extension of
the Ogg Vorbis audio file.

4. Type <source src="myAudio.mp3"
type="audio/mp3">, where myAudio.

mp3 is the location, name, and extension

of the MP3 audio file.

5. Type <object type="application/x-
shockwave-flash" data="player.swf
?audioUrl=myAudio.mp3&controls=
true"> (where myAudio.mp3 is the
location, name, and extension of the
audio file) to specify that it's a Flash

fallback player and to specify the player

and audio file to use. In this instance,
player.swf is the same Flash fallback
player that was used in the sections on
video. Note that the parameters speci-

fied here are specific to the player.swf

used throughout this chapter.

o Two audio sources are defined for this audio
element, and browsers such as Internet Explorer 8
will revert to using the specified Flash fallback
player, which uses the MP3 file as its audio source.

<body>
<audio controls="controls">
<source src="piano.ogg" type=
"audio/ogg">
<source src="piano.mp3" type=
"audio/mp3">
<object type="application/
x-shockwave-flash"
data="player.swf?audioUrl=
piano.mp3&controls=true">
<param name="movie" value=
"player.swf?audioUrl=
piano.mp3&controls=true" />
</object>
</audio>
</body>

476 Chapter 17

] f b

0 Audio Flash fallback player in Internet Explorer 8

6. Type <param name="movie"
value="player.swf?audioUrl=
myAudio.mp3&controls=true" />
(where myAudio.mp3 is the location,
name, and extension of the audio file) to
specify the player and audio for brows-
ers that don’t understand the informa-
tion in the opening object element
definition.

7. Type </object> to close the object
element.

8. Type </audio> to close the audio
element ©@.

A browser such as Internet Explorer 8
will simply ignore the audio and source ele-
ments and will go straight to the Flash fallback
player. As long as the user has Flash installed,
the audio content will play.

Video, Audio, and Other Multimedia 477

Adding Audio
with Flash and a
Hyperlink Fallback

You can provide a download link after the
Flash fallback player to provide an extra
fallback €.

To add Flash and a hyperlink
fallback to your audio:

1. Obtain your audio files.

2. Type <audio controls="controls">
to open the audio element with the
default control set.

3. Type <source src="myAudio.ogg"
type="audio/ogg">, where
myAudio.ogg is the location, name, and
extension of the Ogg Vorbis audio file.

4. Type <source src="myAudio.mp3"
type="audio/mp3">, where
myAudio.mp3 is the location, name, and
extension of the MP3 audio file.

5. Type Download
the audio (where myAudio.mp3 is
the location, name, and extension of the
audio file) to provide a hyperlink audio
download for browsers that are not
HTML5 capable.

o Two audio sources are defined for HTML5
browsers, and a Flash fallback player is defined
for browsers, such as Internet Explorer 8, that do
not support Flash. A further fallback is provided
via a simple hyperlink to the MP3 version of the
audio file.

<body>
<audio controls="controls">
<source src="piano.ogg" type=
"audio/ogg">
<source src="piano.mp3" type=
"audio/mp3">
<object type="application/
x-shockwave-flash" data=
"player.swf?audioUrl=piano.mp3
8controls=true" width="280">
<param name="movie" value=
"player.swf?audioUrl=piano.mp3
8controls=true" />
</object>
Download the
audio
</audio>
</body>

478 Chapter 17

“ [3 [

Download the audio

0 Audio Flash and hyperlink fallback in Internet
Explorer 8

. Type <object type="application/

x-shockwave-flash" data=
"player.swf?audioUrl=myAudio.mp3
&controls=true"> (where myAudio.mp3
is the location, name, and extension of
the audio file) to specify that it’'s a Flash
fallback player and to specify the player
and audio file to use. Note that the
parameters specified here are specific
to the player.swf used throughout this
chapter.

. Type <param name="movie"

value="player.swf?audioUrl=
myAudio.mp3&controls=true" />
(where myAudio.mp3 is the location,
name, and extension of the audio file)
to specify the player and audio for
browsers that don’t understand the
information in the opening object
element definition.

. Type </object> to close the object

element.

. Type Download

the audio.

10. Type </audio> to close the audio

element.

Video, Audio, and Other Multimedia 479

Getting Multimedia
Files

The most common multimedia files embed-
ded on Web pages are sounds and videos.
You can create sounds with a micro-

phone and digitizing software (like Sound
Recorder for Windows or Amadeus for
Mac). And there are many programs that
create MP3s from CDs.

With the advent of smartphones and their
cameras (which just keep improving), get-
ting video on the Web has become easier.
Even if the video isn’t in the format you
require, tools such as Miro Video Con-
verter and HandBrake allow you to easily
convert the files to the required format.

You can also find sounds and movies on
the Web, although you should read the cor-
responding license agreements carefully.

But don’t limit yourself to audio and video.
Even though the HTML5 canvas element,
with the aid of its JavaScript API, allows
you to create animations and so forth, you
can still embed Flash animations in the
same way as before—using the object
element. Despite the enhancements that
HTML5 media brings, Flash still has its
place.

480 Chapter 17

Considering
Digital Rights
Management (DRM)

One thing you’ll no doubt have noticed
with all this embedding of audio and video
files is the fact that the URLs to the source
files are available for anyone to download
and “steal” your content—just as embed-
ded images and HTML, JavaScript, and
CSS source files are.

There’s nothing you can do about this.

HTML5 doesn’t provide any method to
protect your media content in any way,
although it may in the future.

So if you are concerned about protecting
your media files, for now don’t use either
HTML5 native multimedia or the fallback
Flash methods shown in this chapter,
because DRM needs the media file embed-
ding and the DRM tools to be already
baked into the source material.

Video, Audio, and Other Multimedia 481

Embedding Flash
Animation

Adobe Flash software allows you to create
animations, movies, and other media that
are widely used on the Web. The accom-
panying plugin was often used to embed
video and audio in a Web page. But Flash
was and is used for more than that. Since
animations are often created using Adobe
Flash, and although they won’t display on
devices such as iPads and iPhones, there
are still occasions when you will decide to
use them.

You saw earlier how Adobe Flash is used
to embed audio and video as a fallback
for older browsers using a downloaded
Flash fallback player. Here you’ll see how
to embed an actual Adobe Flash animation
SWF file (@ and ©).

o To embed Flash animation, set the MIME type
to application/x-shockwave-flash.

<head>

<title>Embed Flash Movie</title>

</head>

<body>

<object type="application/x-shockwave-
flash" data="http://www.sarahsnotecards
.com/catalunyalive/minipalau.swf"
width="300" height="240">

<param name="movie" value="http://
www.sarahsnotecards.com/catalunyalive/
minipaulau.swf" />

</object>

</body>

e0e Embed Flash Movie (=]
g O e -G

Done y

0 The Flash animation is embedded on the page
by using the object element.

482 Chapter 17

To embed Flash animation:

1. Type <object to begin the object
element.

2. Type type="application/x-shock
wave-flash" to indicate the MIME type
for Flash animations.

3. Type data="filename.swf", where
filename.swf is the name and location
of the Flash animation on your server.

4. Specify the dimensions of your anima-
tion with width="w" height="h", where
w and h are values in pixels.

5. Type > to finish opening object tag.

6. Type <param name="movie"
value="filename.swf" />, where
filename.swf matches what you used
in step 3.

7. Type </object> to complete the object.

This technique is based on the article
“Flash Satay” by Drew McLellan on A List
Apart (www.alistapart.com/articles/flashsatay).

Drew figured out a way to use small
reference movies to help Flash animations
stream properly with this technique. See his
article for details.

Many people use a combination of the
object tag and the embed tag to insert Flash
animation on a Web page, both of which are
now valid in HTML5. For more details, search
for “embed Flash” on Adobe’s Web site
(www.adobe.com).

Video, Audio, and Other Multimedia 483

www.alistapart.com/articles/flashsatay
www.adobe.com

Embedding
YouTube Video

YouTube (and other services) now offer a
server where you can upload your video
files (which tend to be of considerable size)
and make them available to your visitors.

To embed YouTube video:

1. Go to YouTube and view the video you
want to use (www.youtube.com).

2. Copy the movie code from the address
bar. It comes right after the v= and con-
tinues until the first ampersand (&).

3. Follow the instructions for embedding
Flash in the section “To embed Flash
animation.” In the two places where you
must insert the URL for the Flash anima-
tion, type http://www.youtube.com/v/
moviecode, where moviecode is what
you copied from the address bar in
step 2.

When you grab the movie code for a You-
Tube movie, it comes after v=. But when you
construct your URL for referencing the movie,
you use Vv/.

484 Chapter 17

www.youtube.com
http://www.youtube.com/v/moviecode
http://www.youtube.com/v/moviecode

Using Video
with Canvas

Another great thing about having native
multimedia with HTML5 is that it can work
with a lot of the other new features and
functionality that either come with or are
related to HTML5.

One of the new features is the canvas
element.

The canvas element and its correspond-
ing JavaScript API allow you to draw and
animate objects on your Web pages.

You can also use the API in conjunction
with HTMLS video, because the video
element can be treated just like any other
HTML element and is therefore accessible
to canvas.

With the JavaScript API, you can capture
images from a playing video and redraw
them in the canvas element as an image,
thus allowing you to, for example, take
screenshots from the video.

You can manipulate individual image pixels
via the API, and since you can create
images in canvas from your video, this
allows you to also manipulate the video
pixels. For example, you could convert
them all to grayscale.

This gives you only a small idea of what
canvas can do with the video element,
and a thorough discussion of it is outside
the scope of this book. For further informa-
tion on canvas and its JavaScript API, see
the section “Further Resources” at the end
of this chapter.

Video, Audio, and Other Multimedia 485

Coupling Video
with SVG

Another technology that people have
begun to take more notice of with the
dawn of HTMLS5 is SVG (Scalable Vector
Graphics).

SVG has been around for ages (since
1999), but HTMLS5 brings with it the svg ele-
ment, which allows SVG definitions to be
embedded within the Web page itself.

SVG allows shapes and graphics to be
defined in XML, which the browser inter-
prets and uses to draw the actual shapes.
All that the SVG definition contains is a
bunch of instructions on how and what

to draw.

The graphics produced by SVG are also
vector-based rather than raster-based. This
means that they scale well, because the
browser simply uses the drawing instruc-
tions to draw the shape to the required
size. Raster graphics contain pixel data,
and if you want to redraw the image at a
greater size than the original, there is not
enough pixel data for the new size, leading
to a loss in picture quality.

A complete discussion of SVG is well
outside the scope of this chapter, but it's
mentioned here so you know that video
can be used in conjunction with SVG
definitions. Shapes created by SVG can be
used to mask videos—that is, to show only
the underlying video through the shape (a
circle, for example).

There are also a number of SVG filters
that you can apply to HTML5 video, such
as black and white conversion, Gauss-
ian blurs, and color saturation. For further
information on SVG, see the next section,
“Further Resources.”

486 Chapter 17

Further Resources

This chapter covered only the basics of
HTML5 multimedia. There’s a lot more to
learn, so here are a number of resources
that you can check out at your leisure.

Online Resources

“Video on the Web” (http://diveinto
.htmI5doctor.com/video.html)

HTML5 Video (http://htmlI5video.org)

“WebVTT and Video Subtitles” (www
.iandevlin.com/blog/2011/05/html5/
webvtt-and-video-subtitles)

“HTMLS5 Canvas: The Basics”
(http://dev.opera.com/articles/view/
html-5-canvas-the-basics)

“Learning SVG” (http://my.opera.com/
tagawa/blog/learning-svg)

Books

lan Devlin. HTML5 Multimedia:
Develop and Design. Peachpit Press,
20M. (http://htmI5Smultimedia.com)

Shelley Powers. HTML5 Media. O’Reilly
Media, 2011.

Silvia Pfeiffer. The Definitive Guide to
HTMLS5 Video. Apress, 2010.

Video, Audio, and Other Multimedia 487

http://diveinto.html5doctor.com/video.html
http://diveinto.html5doctor.com/video.html
http://html5video.org
www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
www.iandevlin.com/blog/2011/05/html5/webvtt-and-video-subtitles
http://dev.opera.com/articles/view/html-5-canvas-the-basics
http://dev.opera.com/articles/view/html-5-canvas-the-basics
http://my.opera.com/tagawa/blog/learning-svg
http://my.opera.com/tagawa/blog/learning-svg
http://html5multimedia.com

This page intentionally left blank

Tables

We’re all familiar with tabular data in our

daily lives. It takes many forms, such as In This Chapter

financial or survey data, event calendars,

bus schedules, or TV schedules. In most Structuring Tables 490
cases, this information is presented in Spanning Columns and Rows 494
columns, or row headers, along with the

data itself.

The table element—along with its child
elements—is described in this chapter. I'll
focus on basic table structuring and styl-
ing. HTML tables can get quite complex,
though you'll likely have few occasions

to implement them unless you have a
data-rich site. The links below show code
examples for complex table structures, and
emphasize how to make tables accessible:

= “Bring On the Tables” by Roger
Johansson (www.456bereastreet.com/
archive/200410/bring_on_the_tables/)

m “Accessible Data Tables” by Roger Hud-
son (www.usability.com.au/resources/
tables.cfm)

m “Techniques for Accessible HTML
Tables” by Stephen Ferg (www.ferg.org/
section508/accessible_tables.html)

www.456bereastreet.com/archive/200410/bring_on_the_tables/
www.456bereastreet.com/archive/200410/bring_on_the_tables/
www.usability.com.au/resources/tables.cfm
www.usability.com.au/resources/tables.cfm
www.ferg.org/section508/accessible_tables.html
www.ferg.org/section508/accessible_tables.html

Structuring Tables

The kind of information you put in a spread-
sheet is usually suitable for presentation in
an HTML table.

At the most fundamental level, a table
element is made up of rows of cells. Each
row (tr) contains header (th) or data (td)
cells, or both. You may also provide a
table caption if you think it’ll help your
visitors better understand the table.
Furthermore, the scope attribute—also
optional, but recommended—informs
screen readers and other assistive devices
that a th is the header for a table col-
umn (when scope="col"), for a table row
(when scope="row"), and more (see the
last tip) .

By default, browsers display tables only as
wide as their information demands within
the available space on the page @. As you
would expect, you can change table format-
ting with CSS, as I'll demonstrate shortly.

¥2) A basic table - Mozilla Firefox® o m]
File Edit Yiew History Bookmarks Tools Help

[} A basic table | a5 | =

Cuatterly
Fmanmals for
1962-1964 (in

Thouzands)

1962 1963 1964
F145 §167 $161
F140 §1559 §164
F153 $162 £168
F157 $160 $171

0 By default, th text is bold, th and caption text
is centered, and the table is only as wide as its
content.

o Each row is marked by a tr element. This
very simple table has one row that contains the
headers (the th elements) and three more rows
with cells of data (the td elements). If you include
a caption, it must be the first element inside the
table (caption may also include p and other text
elements).

<body>
<table>
<caption>Quarterly Financials for
1962-1964 (in Thousands)</caption>
<tr>
<th scope="col">1962</th>
<th scope="co0l">1963</th>
<th scope="col">1964</th>
</txr>
<tr>
<td>$145</td>
<td>$167</td>
<td>$161</td>
</tr>
<tr>
<td>$140</td>
<td>$159</td>
<td>$164</td>
</tr>
<tr>
<td>$153</td>
<td>$162</td>
<td>$168</td>
</tr>
<tr>
<td>$157</td>
<td>$160</td>
<td>$171</td>
</tr>
</table>
</body>
</html>

490 Chapter 18

G | defined the table’s sections explicitly with
thead, tbody, and tfoot. Next, | added a th at the
beginning of each row; the ones in the tbody and
tfoot have scope="row" to indicate they are row
headers.

<body>
<table>
<caption>Quarterly Financials for
1962-1964 (in Thousands)</caption>
<thead> <!-- table head -->
<tr>
<th scope="col">Quarter</th>
<th scope="col">1962</th>
<th scope="co0l">1963</th>
<th scope="col">1964</th>

</tr>
</thead>
<tbody> <!-- table body -->
<tr>
<th scope="row">Q1</th>
<td>$145¢</td>
<td>$167¢</td>
<td>$161</td>
</tr>
<tr>

<th scope="row">02</th>

<td>$140</td>
<td>$159</td>
<td>$164</td>
</tr>
... 03 and Q4 rows ...
</tbody>
<tfoot> <!-- table foot --»
<tr>
<th scope="row">TOTAL</th>
<td>$595</td>
<td>$648</td>
<td>$664</td>
</tr>
</tfoot>
</table>
</body>
</html>

The table from) is missing something,
though. How do you know what each row
of data represents? It would be easier to
tell if the table had headers alongside
each row too. Adding those is simply a
matter of adding a th as the first element in
each row. And whereas the column head-
ers have scope="col", each row th that
precedes a td is given scope="row" (9.

| also used (@ as an opportunity to intro-
duce a few other elements that are specific
to defining tables: thead, tbody, and
tfoot. The thead element explicitly marks
a row or rows of headers as the table head
section. The tbody element surrounds all
the data rows. The tfoot element explic-
itly marks a row or rows as the table foot
section. You could use tfoot for column
calculations, like in (9, or to repeat the
thead headings for a long table, such as

in a train schedule (some browsers may
also print the tfoot and thead elements
on each page if a table is multiple pages
long). The thead, tfoot, and tbody ele-
ments don’t affect the layout and are not
required (though | recommend using them),
except that tbody is required whenever
you include a thead or tfoot. You can also
target styles with all three of them.

Tables 491

As you saw (), tables can appear a little
squished by default. With some basic CSS
applied @), you can add space in the cells
to spread things out (via padding), add
borders to indicate cell boundaries (via
border), and format text, all to improve
comprehension of your table @.

To structure a table:
1. Type <table>.

2. If desired, type <caption>caption
content</caption>, where caption
content describes your table.

3. If desired, before the first tr element
of the section you want to create,
type <thead>, <tbody>, or <tfoot>, as
appropriate.

4. Type <tr> to define the beginning of
a row.

5. Type <th scope="scopetype"> to begin
a header cell (where scopetype is
col, row, colgroup, or rowgroup), or
type <td> to define the beginning of a
data cell.

6. Type the contents of the cell.

7. Type </th> to complete a header cell or
</td> to compete a data cell.

8. Repeat steps 5 through 7 for each cell
in the row.

9. Type </tr> to complete the row.

0 This simple style sheet adds a border to each
data cell, and padding within both the header and
data cells. It also formats the table caption and
content. Without border-collapse: collapse;
defined on the table, a space would appear
between the border of each td and the border

of its adjacent td (the default setting is border-
collapse: separate;). You can apply borders to
th elements too, as shown in “Spanning Columns
and Rows.”

body {
font: 100% arial, helvetica, serif;

}

table {
border-collapse: collapse;
}

caption {
font-size: .8125em;
font-weight: bold;
margin-bottom: .5em;

}

th,

td {
font-size: .875em;
padding: .5em .75em;

td {

}

tfoot {
font-style: italic;
font-weight: bold;

border: 1px solid #000;

492 Chapter 18

%) Basic table evolved - Mozilla Fir =18 x|
File Edit Wiew History Bookmarks —Tools | Help

{__i Basic table evolved | + | =

Quarterly Financials for 1962-1964
{in Thousands}

Quarter 1962 1963 1964

Q1 $145 | $167 | $161

Qz $140 | $159 | $164

Q3 $153 | $162 | $168

a4 $157 | $160 | 3171

TOTAL | $595 | $648 | $664

G Now the table has headers for columns and
rows, and it has a row with column totals, enclosed
in a tfoot element. The styling for our border, cell
padding, caption content, and tfoot content is
displayed too.

10. Repeat steps 4 through 9 for each row
in the section.

11. If you started a section in step 3, close
the section with </thead>, </tbody>, or
</tfoot>, as appropriate.

12. Repeat steps 3 through 11 for each sec-
tion. Note that a table may have only
one thead and tfoot but may have
multiple tbody elements.

13. To finish the table, type </table>.

If a table is the only element other than
a figcaption nested in a figure element,
omit the caption and describe the table
with the figcaption instead (see “Creating a
Figure” in Chapter 4). To clarify, don’t nest the
figcaption in the table, butin the figure,
as usual.

Although not shown in the CSS exam-
ple (1), you can define a background, a
width, and more in your style sheet for the
table, td, or th elements. In short, most

of the text and other formatting you use to
style other HTML elements applies to tables
too (see “Spanning Columns and Rows” for
another example). You may notice slight dis-
play differences among browsers, especially
Internet Explorer.

You can assign the scope attribute to a
th that is the header for an entire group of col-
umns (scope="colgroup") or an entire group
of rows (scope="rowgroup"). See an example
of the latter in the next section.

Tables 493

Spanning Columns
and Rows

You may span a th or td across more than
one column or row with the colspan and
rowspan attributes, respectively. The num-
ber you assign to the attributes specifies
the number of cells they span (@) and ©).

To span a cell across two
or more columns:

1. When you get to the point at which you
need to define the cell that spans more
than one column, type <td followed by
a space.

2. Type colspan="n">, where n equals
the number of columns the cell should
span.

3. Type the cell’s contents.
4. Type </td>.

5. Complete the rest of the table as
described in “Structuring Tables.” If you
create a cell that spans two columns,
you will need to define one cell fewer in
that row; if you create a cell that spans
three columns, you will need to define
two cells fewer in that row; and so on.

o I've indicated that Celebrity Hoedown runs

on both Tuesday and Wednesday at 8 p.m. by
applying colspan="2" to the td that contains the
show. Similarly, | added rowspan="2" to the td
containing Movie of the Week, because it runs

for two hours. Note, too, that the Time th has
scope="rowgroup", because it is the header for
every header in the group of row headers directly
beneath it.

<body>
<table>
<caption>TV Schedule</caption>
<thead> <!-- table head -->
<tr>
<th scope="rowgroup">Time</th>
<th scope="col">Mon</th>
<th scope="col">Tue</th>
<th scope="col">Wed</th>
</tr>
</thead>
<tbody> <!-- table body -->
<tr>
<th scope="row">8 pm</th>
<td>Staring Contest</td>
<td colspan="2">Celebrity Hoedown
</td>
</tr>
<tr>
<th scope="row">9 pm</th>
<td>Hardy, Har, Har</td>
<td>What's for Lunch</td>
<td rowspan="2">Movie of the Week
</td>
</tr>
<tr>
<th scope="row">10 pm</th>
<td>Healers, Wheelers &
Dealers</td>
<td>It's a Crime</td>
</tr>
</tbody>
</table>
</body>
</html>

494 Chapter 18

=) Talihe weitl colsgran ar rovespan - Muzilla Firefus =10]%|
Fie Edt ‘View Hitory Gookmarks ‘mk_ Help
[Tk with codspan and rowspan l o]

TV Schedule

Stanng Contest Celebnty Hoadown

Hardy, Har, Har

‘What's for Lunch?

Healers, Wheelers t¥inig.of ihe eal:

£ Dealers Ht's a Cnme

0 It may have been a little hard to tell by glancing
at the code, but when viewed in the browser

it'’s clear how colspan and rowspan affect the
table’s display. | also styled the table with CSS.
The style sheet is available on the book’s site at
www.bruceontheloose.com/htmlicss/examples/.

To span a cell across
two or more rows:

1. When you get to the point at which you
need to define the cell that spans more
than one row, type <td followed by a
space.

2. Type rowspan="n">, where n equals the
number of rows the cell should span.

3. Type the cell’s contents.
4. Type </td>.

5. Complete the rest of the table as
described in “Structuring Tables.” If you
define a cell with a rowspan of 2, you
will not need to define the correspond-
ing cell in the next row; if you define
a cell with a rowspan of 3, you will not
need to define the corresponding cells
in the next two rows; and so on.

Each row in a table must have the same
number of cells defined. Cells that span across
columns count for as many cells as the value
of their colspan attribute.

Each column in a table must have the
same number of cells defined. Cells that span
across rows count for as many cells as the
value of their rowspan attribute.

Tables 495

www.bruceontheloose.com/htmlcss/examples/

This page intentionally left blank

Working with Scripts

While HTML defines your Web page’s
content and CSS defines its presentation,
JavaScript defines special behavior.

You can write simple JavaScript programs
to show and hide content, and you can
write more complicated ones that load data
and dynamically update your page. You
can drive custom HTML5 audio and video
element controls, and create browser-
based games that use HTML5’s canvas
element. And you can write full-blown

Web applications that leverage some of
the most powerful features in HTML5 and
related technologies (they’re advanced
topics, so they aren’t covered in this book).

In This Chapter

Loading an External Script
Adding an Embedded Script
Handling JavaScript Events

499
502
503

As you can see, JavaScript has quite a
range of possibilities, and its use has
exploded. JavaScript libraries like jQuery
(jquery.com), MooTools (mootools.net), YUI
(yuilibrary.com), and others have made it
easier to add both simple interactivity and
sophisticated behavior to pages, while
helping them behave consistently across
browsers. Of these, jQuery enjoys the most
widespread use, largely because begin-
ners find it easier to learn, it has good
online documentation, and it has a large
community behind it.

Browser vendors have spent consider-
able time making their browsers process
JavaScript significantly faster than their
versions of even just a few years ago.
JavaScript also works in tablet and modern
mobile browsers, though for performance
reasons you’ll want to be smart about how
much you load in pages for these devices.

Alas, JavaScript is its own, large topic,

so we won'’t cover it in this book. In this
chapter, I'll stick to explaining how to insert
scripts, once created, into your HTML
documents. I'll also pass along some basic
advice about how to do that in a way that
minimizes the impact on your page’s ren-
dering time, and I'll give you a quick look at
event handlers.

498 Chapter 19

o The sxc attribute of the script element
references the script’s URL. Most of the time, it is
best to load scripts at the very end of your page,
just before the </body> end tag. You may also
load scripts in your page’s head element 0 but
it can affect how quickly your page displays. See
the “Scripting and Performance Best Practices”
sidebar for more information.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Loading an External Script</title>
<link rel="stylesheet" href="css/base.css" />
</head>
<body>
... ALl of your HTML content is here ...

<script src="behavior.js"></script>
</body>
</html>

0 This example shows a script loaded in the
head instead. It is after the 1ink element, so it
won’t block the CSS file from beginning to load
sooner. See the “Scripting and Performance
Best Practices” sidebar to learn why you want to

minimize how often you load scripts from the head.

<IDOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />

<title>loading an External Script</title>
<l-- Load style sheets before any JS files -->
<link rel="stylesheet" href="base.css" />
<script src="behavior.js"></script>
</head>
<body>
... All of your HTML content is here ...
</body>
</html>

Loading an
External Script

There are two primary kinds of scripts—
those that you load from an external file (in
text-only format) and those that are embed-
ded in your page (covered in the next sec-
tion). It's the same concept as external and
embedded style sheets.

And just as with adding style sheets to your
pages, it's generally better to load scripts
from an external file @ than to embed
them in your HTML. You reap some of the
same benefits, in that a single JavaScript
file can be loaded by each page that needs
it. You can edit one script rather than
updating similar scripts in individual HTML
pages.

Whether loading an external script or
embedding a script, you use the script
element.

To load an external script:

Type <script src="script.js"></script>,
where script.js is the location on the
server and the file name of the external
script. Place each script element directly
before the </body> end tag whenever pos-
sible (9, instead of in the document’s head
element

continues on next page

Working with Scripts 499

Your page may load multiple JavaScript
files and contain multiple embedded scripts
(see in “Adding an Embedded Script”). By
default, browsers will load (when necessary)
and execute scripts in the order in which they
appear in your HTML. See the sidebar to learn
why to avoid multiple scripts when possible.

Browsers that don’t understand
JavaScript (these are admittedly rare) or that
have it disabled by the user will ignore your
JavaScript file. So be sure that your page
doesn’t rely on JavaScript to provide users
access to its content and basic experience.

To keep your files organized, it's common
to place your JavaScript files in a sub-folder
(js and scripts are popular names). Your

src attribute values would need to reflect this,
just like any URL that points to a resource.

For instance, if the file in were in a folder
named assets/js/, you could type <script
src="assets/js/behavior.js"></script>.
(That’s just one example; there are other ways
to represent the URL. See “URLs” in Chapter 1.)

The JavaScript file in the examples (
and () is called behavior.js, but you can
specify other valid file names as long they
have the .js extension.

Technically, there is a third way to add
JavaScript to a page: inline scripts. An inline
script is a small bit of JavaScript assigned

to certain element attributes directly in your
HTML. | hesitate to mention them except to
point out that you should avoid using them,
just as you would avoid inline style sheets.
Just as inline style sheets mix your HTML and
CSS, inline scripts inextricably intertwine your
HTML and JavaScript, rather than keeping
them separate per best practices.

500 Chapter 19

Scripting and Performance Best Practices

A full discussion of best practices pertaining to scripts and page performance is beyond the scope
of this book, but I'll touch on a few points that are high impact.

First, it helps to understand how a browser handles scripts. As a page loads, by default the
browser downloads (for external scripts), parses, and executes each script in the order in which it
appears in your HTML. As it’s processing, the browser neither downloads nor renders any content
that appears after the script element—not even text. This is known as blocking behavior.

This is true for both embedded and external scripts, and as you can imagine, it can really affect the
rendering speed of your page, depending on the size of your script and what actions it performs.

Most browsers do this because your JavaScript may include code on which another script relies,
code that generates content immediately, or code that otherwise alters your page. Browsers need
to take all of that into account before they finish rendering.

So how do you avoid this? The easiest technique to make your JavaScript non-blocking is to put all
script elements at the end of your HTML, right before the </body> end tag. If you’ve spent even
just a little time viewing source on others’ sites, no doubt you’ve also seen scripts loaded in the
head element. Outside of the occasional instance where that may be necessary, it’s considered a
dated practice that you should avoid whenever possible. (One case in which it is necessary is load-
ing the HTML5 shiv, as described in Chapter 11.) If you do load scripts from the head, place them
after all 1ink elements that load CSS files (again, for performance reasons).

Another quick way to speed up your script loading is to combine your JavaScript into a single file
(or into as few as possible) and minify the code. Typically, minified code doesn’t have line breaks,
comments, or extra whitespace (among other possible differences from un-minified code). Imagine
writing the code in one long line without ever pressing Return or Enter.

You may use tools such as the following to minify your scripts:

m Google Closure Compiler:
http://code.google.com/closure/compiler/ (download and documentation)
http://closure-compiler.appspot.com (online version of tool)

m YUl Compressor:
http://developeryahoo.com/yui/compressor/ (download and documentation)
http://refresh-sf.com/yui/ (unofficial online version of tool)

Each will reduce your file size, but results will vary from script to script. Generally, it’s faster for
a browser to load one file than two (or more), even if the single file is larger than the combined
size of the individual files (unless the one file is much larger).

Those are two common and powerful methods, but they only scratch the surface of what’s
possible. For in-depth discussions of script-loading methods and optimization, | highly rec-
ommend Even Faster Web Sites (O’Reilly Media, 2009) by Steve Souders, as well as his site,
www.stevesouders.com. Be forewarned—some of the discussions get a little technical.

Working with Scripts 501

http://code.google.com/closure/compiler/
http://closure-compiler.appspot.com
http://developer.yahoo.com/yui/compressor/
http://refresh-sf.com/yui/
www.stevesouders.com

Adding an
Embedded Script

An embedded script exists in your HTML
document, much in the way an embedded
style sheet does. An embedded script is
contained in a script element 0. Embed-
ding a script is not the preferred method
(see “Loading an External Script”), but
sometimes it's necessary.

To add an embedded script:

1. In your HTML document, type <script>.
2. Type the content of the script.

3. Type </script>.

Each script element is processed in
the order in which it appears in the HTML,
whether it’s an embedded script or an external
one (see “Loading an External Script”).

Even though the script element
requires an end tag (</script>), you can-
not embed code between it and the start tag
when a sxc attribute is present (see “Loading
an External Script”). In other words, <script
src="behavior.js">Some function in
here</script> is invalid. Any given script
element may only either load an external
script with sxc, or embed a script and not
have a src.

o An embedded script doesn’t have a src
attribute. Instead, the code is in the page. If you
embed a script, do so directly before the </body>
end tag whenever possible. It’s also possible

to embed a script in the head 9 but it’s less
desirable from a performance standpoint.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Adding an Embedded Script</title>
<link rel="stylesheet" href="css/base.css" />
</head>
<body>
... ALl of your HTML content is here ...

<script>

/*

Your JavaScript code goes here
*/

</script>

</body>

</html>

0 This example shows a script embedded in the
head. It appears after the 1ink element so that

the CSS file will load faster. See the “Scripting and
Performance Best Practices” sidebar to learn why
you want to minimize how often you embed scripts
in the head.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Loading an External Script</title>
<l-- Load style sheets before any 1S files -->
<link rel="stylesheet" href="base.css" />
<script>
/*
Your JavaScript code goes here
*/
</script>
</head>
<body>
... ALl of your HTML content is here ...
</body>
</html>

502 Chapter 19

JavaScript Events

In this chapter’s introduction, | noted that
diving into JavaScript was beyond the
scope of the book. However, | do want to
give you a tiny peek at JavaScript events
so you’ll have a basic sense of what Java-
Script can do for you.

You can write JavaScript to respond to
specific, predefined events that either
your visitor or the browser triggers. The

list that follows is just a small sample of the
event handlers available to you when you
write scripts. HTML5 introduces numerous
other ones, many of which revolve around
events related to the audio and video
elements. Some touchscreen devices have
gotten in on the action too, with special
touch-based event handlers.

Please note that “mouse” in this list means
any “pointing device.” For example,

onmousedown occurs if a visitor uses a digi-
tal pen, an actual mouse, or a similar device.

m onblur. The visitor leaves an ele-
ment that was previously in focus (see
onfocus).

m onchange. The visitor modifies the value
or contents of the element. This is most
commonly used on form fields (see
Chapter 16 for more on forms).

m onclick. The visitor clicks the speci-
fied area or hits the Return or Enter key
while focused on it (like on a link).

m ondblclick. The visitor double-clicks
the specified area.

m onfocus. The visitor selects, clicks, or
tabs to the specified element.

m onkeydown. The visitor presses down
on a key while in the specified element.

continues on next page

Working with Scripts 503

m onkeypress. The visitor presses down
and lets go of a key while in the speci-
fied element.

m onkeyup. The visitor lets go of a key
after typing in the specified element.

= onload. The browser finishes loading
the page, including all external files
(images, style sheets, JavaScript, and
so on).

m onmousedown. The visitor presses the
mouse button down over the specified
element.

® onmousemove. The visitor moves the
mouse cursor.

m onmouseout. The visitor moves the
mouse away from the specified element
after having been over it.

= onmouseover. The visitor points the
mouse at the element.

= onmouseup. The visitor lets the mouse
button go after having clicked the ele-
ment (the opposite of onmousedown).

m onreset. The visitor clicks the form’s
reset button or presses the Return or
Enter key while focused on the button.

m onselect. The visitor selects one
or more characters or words in the
element.

m onsubmit. The visitor clicks the form’s
submit button or presses the Return or
Enter key while focused on the button.

You can see a complete list of HTML5
event handlers at http://dev.w3.org/html5/
spec-author-view/global-attributes.html.
The touch-based event handlers that some
touchscreen devices (like smartphones
and tablets) contain include touchstart,
touchend, touchmove, and more (https://
dvcs.w3.org/hg/webevents/raw-file/tip/
touchevents.html).

504 Chapter 19

http://dev.w3.org/html5/spec-author-view/global-attributes.html
http://dev.w3.org/html5/spec-author-view/global-attributes.html
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html

Testing & Debugging
Web Pages

So, you've written a brand new page and

fired it up in your browser only to find that In This Chapter
it doesn’t look anything like you expected.
Or it doesn’t display at all. Or maybe it Trying Some Debugging Techniques 506
looks great in your default browser, but Checking the Easy Stuff: General 508
Yvhen you or yﬁ)ur clients check it in others, Checking the Easy Stuff: HTML 510
it looks, well, kind of funny.
Checking the Easy Stuff: CSS 512

Between HTML, CSS, and the multitude of ecking the Easy St
browsers (especially older ones) and plat- Validating Your Code 514
forms, it's easy to have trouble here and Testing Your Page 516
there. This chapt ill alert t

ere 'S chaprer WI. alert you to some When Images Don’t Appear 519
common errors and will also help you
weed out your own homegrown variety. Still Stuck? 520

Some of these debugging techniques will
seem pretty basic, but problems with Web
pages are often pretty basic too. Before
you go looking for a big problem, make
sure you don’t have any little ones. I'll show
you how in the first section.

Once your code is correct, you should thor-
oughly test your site on a few browsers, in
one or more platforms, to see if each page
works the way you want it to (see the sec-
tion “Testing Your Page” and the sidebar
“Which Browsers Should You Test?”).

Trying Some
Debugging Techniques

Here are some tried and true techniques
for getting the kinks out of a Web page.

m Check the easy stuff first.
m Be observant and methodical.

m Work incrementally. Make small
changes, and test after each change.
That way, you'll be able to pinpoint the
source of a problem if one occurs.

m When you’re debugging, start with what
you know works. Only then should you
add the hard parts chunk by chunk—
testing the page in a browser after each
addition—until you find the source of
the problem.

m Use the process of elimination to figure
out which chunks of your code are giv-
ing you trouble. For example, you can
comment out half of the code to see if
the problem is in the other half). Then
comment out a smaller portion of the
offending half, and so on, until you find
the problem. (See “Adding Comments”
in Chapter 3 and “Adding Comments to
Style Rules” in Chapter 7.)

m Be careful about typos. Many perplex-
ing problems can end up being simple
typing mistakes—for instance, you
spelled a class name one way in your
HTML but a different way in your CSS.

m In CSS, if you're not sure whether the
problem is with the property or with the
selector, try adding a very simple decla-
ration to your selector, like color: red;
or border: 1px solid red; (or choose

o I've commented out the middle section of this
code to see if it’s the culprit. Note that many HTML
and CSS editors include syntax highlighting, which
is automatic color-coding of elements, selectors,
and the like. This can aid your debugging. Mistype
the name of a CSS property, for example, and the
editor won’t show it in the expected color: a hint
that it isn’t valid.

.entry {
border-right: 2px dashed #b74e07;
margin: 0 .5em 2em 0;

}

.entry h2 {
font-size: 1.25em;
line-height: 1;

}

/*

.continued,

.entry .date {
text-align: right;

}

.entry .date {
line-height: 1;
margin: O 1lem O O;
padding: 0;
position: relative;
top: -1em;

}

.intro {

margin: -5px O O 110px;
}
*/

.photo {
float: left;
height: 75px;
width: 100px;
}

.photo a {
margin: 0;
padding: 0;

506 Chapter 20

an uncommon site color like pink if red
is part of your design). If the element
turns red, the problem is with your prop-
erty; if it doesn’t, the problem is with
your selector (assuming you don’t have
another selector that’s more specific or
that comes after the current one).

m Take a break. Sometimes you can get
much more done in the fifteen minutes
after an hour-long walk than you would
have if you’d worked during that hour.
I've also solved problems in my head
while taking brief naps.

m Test changes to your HTML or CSS
directly in the browser by using one or
more of the developer toolbars at your
disposal. Or inspect the code with these
tools to try to locate the problem. (See
the “Browser Developer Tools” sidebar.)

Browser Developer Tools

Browsers either include debugging tools or have them available as extensions. Many tools’
features are similar. The feature you will find yourself returning to time and again is the ability
to change CSS or HTML and see it affect your page immediately. This allows you to quickly test
changes before incorporating them in your code.

Following is a round-up of the tools used most often for each browser:

Chrome: Developer Tools (http:/code.google.com/chrome/devtools/docs/overview.html).

Firefox: The extremely popular Firebug add-on (http://getfirebug.com). Also, Web Developer
(http://chrispederick.com/work/web-developer/) is a slightly different type of tool, but it is very
handy. It’s also available for Chrome at the same link.

Internet Explorer: IE8+ has Developer Tools (http://msdn.microsoft.com/en-us/ie/aa740478) built
in. For IE6 and IE7, you can install the Internet Explorer Developer Toolbar (www.microsoft.com/
download/en/details.aspx?id=18359).

Opera: Dragonfly (www.opera.com/dragonfly/).

Safari: Web Inspector (http:/developer.apple.com/technologies/safari/developer-tools.html).

Documentation and videos showing how to use many of these tools are available online.

See examples of Firebug and Web Inspector in action in “Checking the Easy Stuff: HTML” and
“Checking the Easy Stuff: CSS,” respectively.

Testing & Debugging Web Pages 507

http://code.google.com/chrome/devtools/docs/overview.html
http://getfirebug.com
http://chrispederick.com/work/web-developer/
http://msdn.microsoft.com/en-us/ie/aa740478
www.microsoft.com/download/en/details.aspx?id=18359
www.microsoft.com/download/en/details.aspx?id=18359
www.opera.com/dragonfly/
http://developer.apple.com/technologies/safari/developer-tools.html

Checking the Easy
Stuff: General

While the difference you see between
browsers might be due to some obscure
browser bug or some new technique
you’re using, often it’s just something
simple. Everyone from novices to experts
makes the occasional simple mistake that
trips them up. For instance, it’s easy to
think the source of a problem is in the code
and spend a lot of time debugging it, only
to find that you're changing one file but
uploading and viewing a different one from
your server!

Many of the following suggestions apply
to testing your site from the site’s URL on
your server.

To check the general easy stuff:

m Validate your code as described in “Val-
idating Your Code.” This is a great place
to start, because you can eliminate
coding syntax and related errors as the
cause of the problem you’re noticing.

m Make sure you've uploaded the file you
want to test.

m Make sure you've uploaded the file to
the location where it belongs.

508 Chapter 20

m Make sure you've typed the URL that
corresponds to the file you want to
test. Or if you've tried to browse to the
page from another page, make sure the
URL you coded in the link to the page
matches its file name and location.

m Make sure you've saved the file—
including the very latest changes—
before you upload it.

m Make sure you’'ve uploaded any auxil-
iary files—CSS, images, music, videos,
and so on.

m Make sure the upper- and lowercase
letters in your URL exactly match the
upper- and lowercase letters in your file
names. (By the way, this is one reason
| recommend using only lowercase let-
ters; it reduces the room for error when
typing URLs—for both you and your
visitors.) And make sure you haven’t
used spaces in file names (use hyphens
instead).

= [f you disabled any of the browser
features, such as JavaScript support,
during previous testing, make sure you
haven’t neglected to re-enable them.

m Make sure the problem is not the
browser’s fault. The easiest way to
do that is to test the page in another
browser.

In the next two sections, I'll tell you how to
check the easy stuff in HTML and CSS.

Testing & Debugging Web Pages 509

Checking the Easy
Stuff: HTML

Sometimes the problem is in your HTML.

To check the easy stuff in HTML:

= A simple typo or two can be easy to
miss). Make sure you've spelled
everything correctly and that you've
assigned valid values to attributes 0.
Use one of the HTML validators to
expose these so you can correct them
quickly (see “Validating Your Code”).

m Be careful about element nesting. For
instance, if you open <p> and then use
, make sure the end comes
before the final </p>.

m [f accented characters or special sym-
bols are not displaying properly, make
sure <meta charset="utf-8" /> (or the
right character encoding if different
than UTF-8) appears right after the doc-
ument head element starts, and be sure
your text editor is configured to save
your HTML files in the same encoding. If
you’re still having trouble, try using the
appropriate character reference.

m Be sure attribute values are enclosed in
straight, not curly, quotes. An attribute’s
value can contain single quotes if the
value is enclosed in double quotes @,
which is the norm. If the value itself
contains double quotes, use character
references for the inner quotes @.

o Can you see where the problems are? I've
misspelled sxrc and included a unit type in the
width and height values. The HTML validators will
flag these types of errors, saving you the time of
trying to hunt them down elsewhere if you don’t
notice your typos.

<img scr="woody.jpg" width="200px"
height="150px" alt="Woody the cat" />

0 The corrected version shows the src attribute
spelled correctly, and I've removed the px from the
width and height values.

<img src="woody.jpg" width="200"
height="150" alt="Woody the cat" />

G If an attribute’s value contains a single quote,
you can just enclose it in double quotes as usual.

<img src="jungle.jpg" width="325" height="275"
alt="Llumi's jungle" />

0 If an attribute’s value contains double quotes,
use character references around the quoted text
within the value.

<img src="cookie-the-cat.jpg" width="250"
height="200" alt="Cookie’s saying,
"Enough!"" />

510 Chapter 20

G Don’t include an end tag on void elements, like
img. The HTML validators will flag this example as
an error.

<img src="jungle.jpg" width="325" height="275"

alt="Llumi’s jungle">

dow - 1oi =
Ein [Yew Hgtoy fockeads ok bep
[—— kEl -
AR— @ with Firebug
TOTTEET installed in Firefox,
Bt you can right-click
(or Control-click
tokgark The Page
Soew Eae 24 on a Mac) content
e and choose Inspect
st &1 Element. That
oo displays in Firebug
- the underlying
Wigh Deveioper 3

m structure of the
content @.

ann Malformed start tag

! Maifarmed start tag (=2 =)

We've really got a problem here.

Y v | coms WIML = | ©35 Seipn Dom kP LL L

tn fm o= opox body < beml Style v | Computed Luyout DOM

create & rule for it

@ When you inspect the paragraph with Firebug,
you can see that Firefox structured the HTML as
<p>We've <fm>really got a problem here</fm>.</p>
when it encountered the code error in Q

0 This em element has a typo in the start tag.
When a browser like Firefox parses the HTML, it
tries to make sense of the mistake and changes
the underlying structure of the document when
displaying the page, as shown in @ The HTML
validators will flag this error too.

<p>We’ve <fm>really got a problem here.

</p>

Make sure all appropriate elements
have start and end tags. And don’t

use separate start and end tags for
void (empty) elements @. (Technically,
browsers may render elements cor-
rectly if you omit the end tag or include
one on a void element, but play it safe.)

Use the browser developer tools to
inspect the document structure as it
appears after the browser has parsed

it @, and compare it with the nesting of
elements that you were expecting @.
This may help pinpoint the location of a
malformed tag, an unclosed element, or
an element you closed too soon. (See
the “Browser Developer Tools” sidebar.)

Testing & Debugging Web Pages 511

Checking the
Easy Stuff: CSS

While CSS syntax is pretty straightforward,
it has some common pitfalls, especially if
you’re more accustomed to writing HTML.
A CSS validator will flag syntax errors like
the ones discussed in this section, so vali-
date your style sheets before you go dig-
ging through your CSS looking for errors.

To check the easy stuff in CSS:

m Make sure you separate properties
from their values with a colon (:), not
an equals sign (as you do in HTML)
(@ and O).

m Be sure to complete each property/
value pair (a declaration) with a semi-
colon (;). Make sure there are no extra
semicolons (@ and @).

m Don’t add spaces between numbers
and their units (@ and @).

m Don’t forget to close your curly braces.

m Make sure you’re using an accepted
value. Something like font-style:
none; isn’t going to work, since the
“none” value for this property is called
normal. You can find a list of CSS prop-
erties and values in Appendix B (see
the book’s site).

o Oops. It can be hard to break the habit
of separating properties and values with the
equals sign.

p{

font-size=1.3em;
}

0 Much better. Always use a colon between the
property and the value. It doesn’t matter if you add
extra spaces before and after the colon, but it’s
common to include one after the colon.

p{

font-size: 1.3em;
}

G Another error. You must put one and only one
semicolon between each property/value pair.
Here, there’s one missing and one extra.

p{
font-size: 1.3em font-style: italic;;
font-weight: bold;

0 The error is easier to spot when each property/
value pair occupies its own line, because the
semicolons aren’t lost in a sea of properties,
values, and colons.

/* Still wrong, but easier to spot */
p{

font-size: 1.3em;;

font-style: italic

font-weight: bold;
}

/* Here's the correct version */
pi{
font-size: 1.3em;
font-style: italic;
font-weight: bold;

512 Chapter 20

G And yet another error. Never put spaces
between the number and the unit.

pi{ -
font-size: .8275 em;

}
]
0 This will work. Note that the space between the
colon and the value is optional (but common). .
pi
font-size: .8275em;
}
0 70 Web pector — hitp /| brucsontheloous comhemicos fexamples [chapter = 12/ fimihed-p: tml
| Deemarms Resoorces Sietwars Scrgmu Timeies Prolie Acsn
1.5
5 n

(= B R T Y M e —

@ I've inspected the <h1>Recent Entries</

ha> code with Safari’'s Web Inspector. The CSS
applied to the element displays in the panel on the
right. It shows a line through a font-size setting
to indicate it has been overridden by another

rule (the one listed above it). This result is what |
wanted in this case, but you can use this technique
to track down why a style might not have been
applied as expected. You can also edit the rules in
the right-hand panel to test different CSS.

Don’t forget the </style> end tag for
embedded style sheets.

Make sure you’ve linked the HTML
document to the proper CSS file, and
that the URL points to the desired file.

Watch the spaces and punctuation
between the selectors.

Make sure the browser supports what
you’re trying to do, particularly with
CSS3, because browser support is still
evolving as CSS3 matures. See Appen-
dix B (on the book’s site) for URLs
related to checking browser support
for specific properties and values. A
CSS validator won't tell you if a par-
ticular browser supports a CSS feature,
but it will indicate if you've typed a
selector, property, or value that doesn’t
exist in CSS.

Use the browser developer tools to
inspect the style rules as parsed by
the browser—as well as the currently
computed element styles—to quickly
highlight which code isn’t being parsed
as expected or to see how specificity
rules have been applied @. (See the
sidebar “Browser Developer Tools.”)

Testing & Debugging Web Pages 513

Validating Your Code

One great way to find errors on a page @)
is to run it through a validator @. An HTML
validator compares your code against the
rules of the language, displaying errors or
warnings for any inconsistencies it finds. It
will alert you to syntax errors; invalid ele-
ments, attributes, and values; and improper
nesting of elements @. It can’t tell if you've
marked up your content with the elements
that best describe it, so it’s still up to you

to write semantic HTML (see “Semantic
HTML: Markup with Meaning” in Chapter 1).
CSS validators work similarly.

You aren’t required to make your pages
pass the validators error-free before you
put them on the Web. Indeed, most sites
have some errors. Also, the W3C’s CSS
validator will mark vendor prefixes used on
property names as errors but that doesn’t
mean you should remove the vendor
prefixes from your style sheets (learn about
vendor prefixes in Chapter 14).

Browsers are built to handle many types
of errors (and ignore some others) and dis-
play your page the best they can. So even
if your page has a validation error, you
might not see the difference. Other times,
the error directly affects a page’s render-
ing &Y or behavior. So, use the validators
to keep your code as free from errors as
possible.

See “Checking the Easy Stuff: HTML” and

“Checking the Easy Stuff: CSS” for exam-
ples of errors validators catch.

To validate your code:

1. First check your HTML with either
http://htmli5.validator.nu (&) and (9) or
the W3C’s http://validatorw3.org. See
the first two tips for more information.

) Mary Anna, the Tguana - Mozilla Firefos I [
He Gl Yew Moy Goohmaks Deks Hep

Mary s, U Tpasn l+

& 9 bruseacthebsose com ks eamalesche: - |58 Pl

Mary Anna, the Iguana

There once was an
iguana

= whose name was
Mary Anna

her skin was so dry
that she'd have to cry

Here's some cream: would you
please put it onna?

o That text to the right of the image isn’t
supposed to be so big. I've already looked
through my CSS to rule out that it’'s coming from
an unintentionally large font-size setting. What’s
the problem?

1 Walida o [HHTHLE Validalor - Mogilla Fretest =10]xj
D Gt Mew Mgoy fookowls Bobs o tel
Ay shesket nu (XMTMLS Wsheaeor |
& L e #r- |4 L
Validatonnu GOHTMLS Validatos
okdtin Irgnd
[Addenss — =Ihtp foncanmaloass comtamices/emmplos/chapto-2man-anne-caor il
T St g et
. Shiw Sonscn
Moliale |

0 I've pasted the URL | want to check in the
Address field. | also selected the Show Source
option (it is deselected by default), so my HTML
source code will appear underneath any errors
the validator catches, with the errant parts of the
HTML highlighted.

514 Chapter 20

http://html5.validator.nu
http://validator.w3.org

EH TS walstation results (o httpe euceontheinose.com it exan e ol
Dl [t Vew Mgfory [focknais Dol e
A NI i ok o e [

€0 (Wi i - c|la- Sl

% Bwar: iewang et be n chik o inciner hesdng
Enan.ine 5L cokase 25 o Jnd 5, Counn 25
The Tquass eaing

2 Eivar Benert ool slowed o el of slenent B i thes conterd. [Suppresaing Nrher emmars frmhis subires
Fcom e 43 cobme 1o e 1 colane 3
=" Ty

witech et g o e st
Vit St contart s dapacied

Source

0 The error found on Line 9 is the problem—
instead of an </h1> end tag, I've used another
<h1> start tag by mistake. The other errors are
caused by the first error, so once | fix that, the
page will be error-free.

X

By URI By file upload By direct input

Validate by URI

= More Opllons

Medium: =
Vendor [3
Extensions: e

Frofile;

Warnings:

0 The validator defaults to the CSS level 2.1
profile. Select CSS level 3 if your style sheet
contains any CSS3. Otherwise, the validator will
display more errors, because the CSS3 features
aren’t part of CSS 2.1.

2. Fix any HTML errors that are flagged,
save the changes, and, if necessary,
upload the file to your server again.
Then repeat step 1.

3. You can check for CSS errors with
http://jigsaw.w3.org/css-validator/. Be
sure to select CSS level 3 from the
Profile drop-down if your style sheet
includes any CSS3). Otherwise, the
validator will flag more errors than your
style sheet really contains.

The W3C’s validator (http://validator.w3
.org/) uses the validation engine from http://
html5.validator.nu/, so use whichever you
prefer. The W3C'’s error messages are easier
to read, but they don’t highlight the errant por-
tions of the HTML source code.

You can validate your HTML by entering
the URL (), uploading the HTML file, or past-
ing the HTML into the validator. With the file
upload or copy-paste methods, you can check
files without uploading them to your server.

One HTML error can cause several in a
validator’s results. For example, a missing end
tag can trigger lots of error messages @®. Fix
the end tag, and all of those subsequent errors
go away. Start at the top, fixing a few errors

at a time, and then immediately revalidate the
file to see if other problems are resolved.

HTMLS is pretty lenient about how you
format certain parts of your code. For instance,
it doesn’t care if you close void elements

like img, so both <img src="iguana.jpg"
alt="Mary Anna, the Iguana" /> and <img
src="iguana.jpg" alt="Mary Anna, the
Iguana”> are valid. The validators will not tell
you if your code is consistent in these areas.
If you like being sure your code is consistent,
you can run each HTML page through HTML
Lint (http://lint.brihten.com/html/). It has
options for checking that empty elements

are closed, start and end tags are lowercase,
attributes are lowercase, and more.

Testing & Debugging Web Pages 515

http://jigsaw.w3.org/css-validator/
http://validator.w3.org/
http://validator.w3.org/
http://html5.validator.nu/
http://html5.validator.nu/
http://lint.brihten.com/html/

Testing Your Page

Even if your code validates, your page still
may not work the way you want it to @). Or
it may work properly in one browser, but
not in the next. It's important to test your
page in a variety of browsers and platforms
(see the sidebar “Which Browsers Should
You Test?”).

To test your HTML pages:

1. Validate your HTML and CSS (see
“Validating Your Code”), and make any
necessary changes.

2. Open a browser, and choose File >
Open File. Find the Web page that you
want to test, and click Open. The page
appears in the browser.

3. Go through the whole page, and make
sure it looks exactly the way you want
it. For example:

» Does the formatting look the way you
want it to?

» Does each URL in your links point to
the proper page or asset? (You can
test the URLs by activating the links
and seeing if the right thing happens.)

» Is your CSS file referenced properly
(€& through (9)?

» Do all of your images appear? Are
they placed and aligned properly?

4. Without closing the page in the
browser, open the appropriate HTML or
CSS document and make any neces-
sary changes.

5. Save the changes.

6. Switch back to the browser and refresh
or reload to see the changes.

7. Repeat steps 3 through 6 until you are
satisfied with your Web page. Don’t
get discouraged if it takes several tries.

) Mary Anna, the Iguana - Mozilla Hrefox =10] x|
File Edt Wew History Bookmarks Tools Help

_| Mary Anna, the Iguana | + | =

Mary Anna, the Iguana

There ¢nce was an jguana

whose name was Mary Anna
her skin was fo dry

that she'd have to cry

Here's some cream:

would you please put it onna?

0 This page validates, but it doesn’t look any-
thing like it's supposed to. What’s the problem 0?

0 The problem is the link to the CSS file—the
file is named styles.css, and here I'm linking to
style.css. The browser can’t find the CSS and
thus displays the page wrong V. After fixing the
file name in the code, the style sheet loads.

<IDOCTYPE html>

<html lang="en">

<head>
<meta charset="utf-8" />
<title>Mary Anna, the Iguana</title>
<link rel="stylesheet" href=

"css/style.css" />
</head>
<body>

</body>
</html>

516 Chapter 20

) Mary Anna, the 1guana - Mozilla firefox S [=E]
Fie Bt Yew Helory Bockmade Tk Help
Mary Anne, the lgusna |+

Mary Anna, the Iguana

0 Now that the link to the CSS is corrected, the
page is displayed properly.

Revalidate the code to make sure you
haven’t introduced any new errors.

8. Beginning with step 2, perform the
same testing procedure in other brows-
ers until you are satisfied and think your
page is ready to go live on your site.

9. Upload the files to the server.

10. Return to the browser, type your page’s
URL in the address bar, and press
Return or Enter. The page will appear in
the browser.

11. With your page on the server, go
through your page again to make sure
everything is all right. Don’t forget to
test it on mobile devices too, if visitors
will be accessing your site on them.

I recommend testing your site’s local ver-
sion thoroughly before you upload your files

to your server. Once they are uploaded, test
them thoroughly again, but from your server—
regardless of how much testing you did of your
local version during development—because
that’s the version your visitors will see.

Again, if you can, test your HTML
documents in several browsers on various
platforms (see the sidebar “Which Browsers
Should You Test?”). You never know what
browser (or computer) your visitors will use.

See “Building a Page that Adapts with
Media Queries” in Chapter 12 for information
on mobile device browser testing.

If your HTML code instead of your page
displays in the browser, be sure your file has
either a .html or .htm extension (and not one
like .txt).

Sometimes it’s not your fault—especially
with styles. Make sure a browser supports
the feature you’re having trouble with before
assuming the problem is with your code. See
Appendixes A and B (on the book’s site) for
links to resources that contain information
about browser support for HTML and CSS
features, respectively.

Testing & Debugging Web Pages 517

Which Browsers Should You Test?
Generally, most people developing sites verify them in the following browsers:

m Chrome’s latest version. Chrome updates itself automatically on your computer. A new release
occurs about once every six weeks. Download Chrome at www.google.com/chrome.

m Firefox 3.6+ Firefox has a rapid release schedule, like Chrome, though updates are not auto-
matic. Firefox is already several versions beyond version 3.6, so 3.6 won’t be a priority for much
longer. Download Firefox at www.firefox.com.

= |nternet Explorer 7+. Download IE at http://windows.microsoft.com/en-US/internet-explorer/
downloads/ie.

m Safari 5+ In most cases, limit your testing to the Mac version. Although Safari is available on
Windows, it has a very small user base, so it isn’t particularly worth testing on it. Download
Safari at www.apple.com/safari/.

m Opera 11+ Opera has a small market share in many parts of the world, but it also has excellent
HTML5 support and tools. Download Opera at www.opera.com/.

Browser capabilities have exploded in recent years due to HTML5, CSS3, improved JavaScript
engines, and other technologies. Most of the browsers listed here will render your CSS similarly
(exceptions mostly involve CSS3). Internet Explorer 7 and 8 are much older and, so, more prone to
differences (and bugs). So it’'s OK if your site looks a little different on IE7 and IE8 as compared with
modern browsers.

And what of Internet Explorer 67 It's been a thorn in the side of designers and developers for years
because of its numerous quirks and bugs. Thankfully, its share of the market has shrunk signifi-
cantly (see www.ie6countdown.com). Nowadays, it’s less common for site owners to put special
effort into getting their sites to behave in IE6, but it all depends on a site’s audience. Some large
corporations aren’t yet willing to abandon it entirely, but people have generally moved away from
it, and you’ll have little to gain by expending much energy on IE6 with your sites. But know your
audience. Some areas of the world, like parts of Asia (China especially), still have a large IE6 user
base. Additionally, some large organizations use IE6 as their default browser.

It’s a little challenging to get access to all these browsers and platforms. See Addy Osmani’s article
for ideas about how to test your pages on a variety of browsers, especially the range of Internet
Explorer versions: http://coding.smashingmagazine.com/2011/09/02/reliable-cross-browser-test
ing-part-1-internet-explorer/. Also, friends and family members can help you test your pages if

they have browsers you don’t. If you’re tight on time or resources and need to narrow your testing,
check your pages on the latest versions of Chrome and Firefox and on IE7+ if at all possible.

The browser market moves fast: By the time you read this, people may be testing newer versions
of these browsers. Still, if you follow the principle of progressive enhancement, your sites can offer
a simple experience in older browsers and an enhanced one in modern browsers.

With this in mind, Yahoo! introduced the concept of Graded Browser Support (http:/yuilibrary.com/
yui/docs/tutorials/gbs/), which it applies to the testing of YUI, their JavaScript and CSS framework
(www.yuilibrary.com). The idea is to categorize browsers into grade levels, which define what is
expected of them during testing. You could adopt their approach and categorize browsers, as
appropriate, for your project.

Google takes a different approach with Google Apps, supporting the two most recent versions
of most browsers (http://googleenterprise.blogspot.com/2011/06/our-plans-to-support-modern-
browsers.html). Similarly, your project’s needs may vary.

518 Chapter 20

www.google.com/chrome
www.firefox.com
http://windows.microsoft.com/en-US/internet-explorer/downloads/ie
http://windows.microsoft.com/en-US/internet-explorer/downloads/ie
www.apple.com/safari/
www.opera.com/
www.ie6countdown.com
http://yuilibrary.com/yui/docs/tutorials/gbs/
http://yuilibrary.com/yui/docs/tutorials/gbs/
www.yuilibrary.com
http://googleenterprise.blogspot.com/2011/06/our-plans-to-support-modern-browsers.html
http://googleenterprise.blogspot.com/2011/06/our-plans-to-support-modern-browsers.html
http://coding.smashingmagazine.com/2011/09/02/reliable-cross-browser-testing-part-1-internet-explorer/
http://coding.smashingmagazine.com/2011/09/02/reliable-cross-browser-testing-part-1-internet-explorer/

0 The file name for the image is iguana.jpg, but
in the HTML, it is incorrectly referenced as Iguana
.jpg (with a capital I). As result, it doesn’t display
when you check the page from your server &

<body>
<hi>Mary Anna, the Iguana</h1>

<p><img src="Iguana.jpg" width="220" height=
"165" alt="Mary Anna, the Iguana" /> There
once was an iguana ...</p>

</body>

</html>

) rory Anno, the Iguana - Mozilla firefox = (=}
B B Yew Hgloy Quokmarls Buk bel

Mary &rna, the Iguans Lt‘

& 3 brucsonthokoase.comhimicssicxemplesiche 77 = | C || 20 - Geog Plls

Mary Anna, the Iguana

PUE It onna?

0 The page may look fine on your computer if it
isn’t picky about upper- and lowercase letters. But
when the page is published to the server, which is
case sensitive, the image cannot be found and the
alt text displays instead.

When Images
Don't Appear

Little red x’s, broken image icons, alternate
text, or nothing at all—these are all signs
that your images aren’t loading properly
(@ and ©). It's a drag if what you really
wanted was a picture of an iguana!

To fix missing images:

m First, check that the file name of the
image on the server exactly matches
the name you’ve referenced in the img
element, including upper- and lower-
case letters and the extension).

m Don’tinclude spaces in file names. See
“File Names” in Chapter 1.

m Make sure the image’s URL is correct
in the img element’s sxc attribute. One
easy test is to put an image in the same
directory as the HTML page. Then you'll
just need the proper file name and
extension in the img element, but no
path information. If the image shows up,
the problem was probably in the path.
However, it isn’t good practice to keep
images in the same directory as HTML
files, because your site will quickly
become disorganized. So after your
test, remove the image from the HTML
page directory, and fix the sxc path that
points to it. See “URLs” in Chapter 1.

m If the image shows up when you view
your page on your computer but not
when you upload the page to the
server, make sure you’ve uploaded the
image to the server.

m Have you saved the image as a PNG,
JPEG, or GIF? If so, all browsers will
display it, which is not true for a BMP
or TIFF. See Chapter 5 for more
information.

Testing & Debugging Web Pages 519

Still Stuck?

Don’t think I'm being patronizing when |
suggest you go take a break. Sometimes
the best thing you can do for a problem is
leave it alone for a minute. When you come
back, the answer may be staring you in

the face. If it's not, let me offer you these
additional suggestions.

1. Check again for typos. Revalidate your
code (see “Validating Your Code”).

2. Check the easy pieces first. Check the
stuff you think you know really well
before you investigate the less familiar
things in search of the problem.

3. Simplify the problem. Go back to the
most recent version of the page that
worked properly. (Related to that, make
copies of your page as you progress
through building it so you will have ver-
sions to go back to if necessary.) Then
test the page as you add each new
element bit by bit.

4. Forresources that your page links
to, type the URL for that CSS, image,
JavaScript, or media file directly in the
browser’s address bar to make sure it
exists where you are expecting it.

5. Read through this chapter again—you
may have missed something the first
time, or it might trigger an idea.

6. There are numerous sites where
you can search for solutions or
ask for guidance. Stack Overflow
(www.stackoverflow.com) and SitePoint
(www.sitepoint.com/forums/forumdis
play.php?40-design-your-site) are just
two examples. You can turn up others
by searching online.

520 Chapter 20

www.stackoverflow.com
www.sitepoint.com/forums/forumdisplay.php?40-design-your-site
www.sitepoint.com/forums/forumdisplay.php?40-design-your-site

Publishing Your
Pages on the Web

Once you've finished your masterpiece

and are ready to present it to the public, In ThIS Chapter

you have to transfer your pages to your

Web host server so that people can get to Getting Your Own Domain Name 522
them. Finding a Host for Your Site 523
You may also want to ask your Web host Transferring Files to the Server 525

or Internet Service Provider (ISP) about the
best way to upload your files. Typically,
they have a set of instructions that let you
know how to connect to their servers and
where to upload files.

Be sure to test your pages thoroughly both
before and after publishing them. For more
details, see Chapter 20.

Getting Your Own
Domain Name

Before visitors can see your site, you need
a domain name to associate with it). You
can register your own domain name and
then find a Web host to serve your site to
anyone who visits the domain in a browser
(see “Finding a Host for Your Site”). If you
ever decide to change your Web host (or
if they go out of business), you can move
your domain to another Web host’s server
and all of your URLs will stay exactly

the same.

To get your own domain name:

1. Point your browser at a domain regis-
trar (see www.internic.net/alpha.html
for a list) to see if the domain you want
is available @. (Many Web hosts also
allow you to search on their sites for
available domains.)

2. Once you've found a domain name,
either register it yourself (more com-
mon) or register it through the Web host
you’ll use. Charges vary from registrar
to registrar, but about $10 a year for a
.com domain is not uncommon (other
extensions may have a different price).
Some Web hosts offer domain registra-
tion as part of a discounted hosting fee.

See the sidebar “Connecting Your
Domain and Your Web Host” in the next
section for an important configuration that’s
required to make your site display when some-
one visits your URL.

L
B

catalancats|

Q Only certain companies are accredited
registrars of domain names (this view and the
one below are from www.namecheap.com, no
endorsement implied). You can use one of their
sites to see if a desired domain name is available,
or you can check through a Web host’s site.

Popular Extensions

™ catalancats.com Available
catalancats.net Available
catalancats.org Available
catalancats.cm Available
catalancats.mobi Available
catalancats.us Available
catalancats.biz Available
catalancats.info Available
catalancats.tv Available

Additional Extensions
catalancats.co Available
catalancats.me Available
catalancats.co.uk Available
catalancats.org.uk Available
catalancats.me.uk Available

0 If the name is available, you can either register
it through the third-party registrar site where

you checked it or register it through a Web

host. (And now you know that the very useful
www.catalancats.com domain can be yours!)

522 Chapter 21

www.internic.net/alpha.html
www.namecheap.com
www.catalancats.com

Your ISP as Web Host

If you have Internet access, you may
already have a small amount of Web
space through your ISP. It might not

be enough for your entire Web site,

but it’s certainly enough to get used

to putting pages on the Web. Ask

your ISP for details. However, keep

in mind that these types of hosting
spaces typically don’t allow you to put
your site at a unique domain name.
Instead, they are in a sub-domain or
sub-directory of the ISP’s domain, like
www.someisp.com/your-site/ instead of
www.yourdomain.com. In other words, if
you have professional ambitions for your
site, you wouldn’t want it to be hosted on
the free space your ISP may provide.

Finding a Host
for Your Site

Unless you have your own server, you’ll
probably have to pay someone to host
your site. Web hosts provide a piece of
their server for your site’s files and provide
other services, like allowing you to create
email addresses that are associated with
your domain name (such as yourname@
yourdomain.com).

There are hundreds of companies that
provide Web site hosting. Most charge a
monthly fee that depends on the services
they offer. Some offer free Web hosting in
exchange for advertising from your site.
Although you can search on the Internet
for a Web host, | recommend talking to
friends to see if they use a host that they
like—or maybe the author of a blog you
trust has noted what company he or she
uses as a host.

When considering a host, there are a
number of things—besides price—to keep
in mind.

m How much disk space will they let you
have for your Web site? Don’t pay for
more than you need. Having said that,
usually even the most basic accounts
will have plenty of space for your site.
Remember that HTML files take up very
little space, whereas images, audio files,
and videos take up successively larger
quantities.

continues on next page

Publishing Your Pages on the Web 523

www.someisp.com/your-site/
www.yourdomain.com

How much data transfer (bandwidth)
per month do their accounts allow? This
represents the total size of data—the
HTML, CSS, images, media files, and

so on—they will serve to your visitors,
rather than how much they’ll allow you
to store on their server. So if you expect
visitors to access a lot of large files from
your site, you’ll need a larger monthly
transfer allotment.

Do they have plans that cater to sites
with a lot of traffic, to ensure the site
won’t crash?

How many mailboxes can you create for
your domain? (Hosting companies often
allow plenty.)

Does the account allow you to host
more than one domain, or is a separate
account required for each site?

What kind of technical support do they
offer? Is it by phone, by email, or by
online chat? How long will it take them
to get back to you? Also, do they have
a lot of support information available on
their site? (You can probably check the
quality of that content before becoming
a customer.)

How often do they back up data
on their servers (in case there’s a
problem)?

What kind of server-side languages

and software packages come with the
account? Do they use PHP, MySQL,
WordPress, or other advanced features?

Do they offer Web analytics reports that
let you know how many people have
visited your site, as well as other useful
data?

Connecting Your Domain and
Your Web Host

Once you've registered a domain and
found a Web host, an important step is
required to tie them together: You must
point your domain to your Web host so
that your site loads when visitors type in
your site's URL.

To make this work, you configure what

is known as the name server associated
with your domain. Your Web host pro-
vides you the name server information to
use in the configuration.

The actual configuration is done in one
of two places, depending on where you
registered your domain (see “Getting
Your Own Domain Name”). If you regis-
tered it with a domain registrar, log in to
your account with them and set the name
server information for your domain (your
domain registrar will provide instruc-
tions). If you registered your domain
through your Web host, you would log
in to your account there to update the
settings.

Don’t worry if all this sounds a little con-
fusing. Your Web host and domain regis-
trar (if different) will provide instructions
on how to do this, and they will usually
provide hands-on help if you need it.

One other point to keep in mind: When
you change the name server settings, it
usually takes 24 to 48 hours (72 at the
very most) for the update to propagate
across the Web. But this change doesn’t
take hold at the same time everywhere.
So if you’ve updated your domain’s name
server (and uploaded your site’s files as
described in “Transferring Files to the
Server”), your friends might be able to
access your site fine from where they
live, even though you don’t see it right
away (or vice versa). Your site should
show for everyone before too long.

524 Chapter 21

File Edit Wiew Transfer Server Bookmarks Help

Copry current confiection to Site Manager..,

New kab CTRL+T
Close kab CTRL+W
Expart...

Import. .,

Show files currently being edited. ., CTRL+E
Exit CTRL+0)

Q To enter information about

a new server, select File > Site
Manager from the main FileZilla
window. Site Manager is where
you configure the FTP connection
details for each site.

o
Gemeral | advanced | Transfer Settngs | Charset |

Host: ,7 m:[—

Profocol: [FTP - Fie Tramfer Prolocd =]
Encryphion: [Lkse pilain FTP =]
Logon Type: [=
Liser: Jarorrmens

Password: [ressasaessasas
Account: [

Comments:

0 When you click the New Site button in Site
Manager, a temporary name appears under My
Sites.

(2] Site Manager
Select Entry:
EEIETN Advanced Transfer Settings | Charset
§ My Sites -
4 mymEwsite Host fip.mynewsite com Fart:
A someothersite Protocol; | FTP - File Transfer Pratocol
L somerte Encryption; | Use plain FTP
Logon Type: | Normal
User: myusername
Password
Account
Camments
New Site New Falder
New Bookmark Rename
Delote Copy

| - Connect- | OF & Cancel

G Replace the temporary name with a name of
your choice, and then configure the connection
details in the General tab. The Connect button
saves the information and establishes a
connection with the server right away. The OK
button saves the information only.

Transferring Files
to the Server

In order for other people on the Internet
to see your pages, you have to upload
them to your Web host’s server. One easy
way to do that is with an FTP client such
as FileZilla (http://filezilla-project.org),
which is free for Windows, Mac OS X, and
Linux (see the tips for other FTP clients).
Many Web page editors also include FTP
capabilities, so you can publish pages right
from there instead of using a program like
FileZilla.

Typically, your Web host emails FTP con-
nection information to you after you sign
up for a hosting account. (Contact them if
you didn’t receive it.) Once you have that
information, you can configure your server
connection and save it under a name

(@ through @) for easy access anytime
you want to publish files (or download
them from your site’s server).

continues on next page

Publishing Your Pages on the Web 525

http://filezilla-project.org

Then, connecting to your server @)
and transferring files (@ and @) are
straightforward.

Note that FileZilla looks different on Mac
OS and Windows, but the interfaces are
configured very similarly (the figures show
a mix of the operating systems). Except
where noted, the steps for using them are
identical.

To define a new FTP site’s properties:

1. Choose File > Site Manager from
FileZilla’s main menu

2. In the Site Manager window, click the
New Site button). A temporary name
for your site appears under My Sites.

3. Type a name for the site (replacing the
temporary name). It doesn’t have to be
the same as your domain name; it’s just
a label. Follow the information provided
by your Web host to fill out the appro-
priate fields under the General tab. At a
minimum, this usually involves entering
the host URL, choosing Normal for the
Logon Type option, and entering your
user name and password (usually cre-
ated when you set up the account)

4. Once you've finished indicating the
connection details, either click the Con-
nect button to save the information and
connect to your server right away or
click the OK button to save the informa-
tion and connect later

5 L Pad "
Host Usrenam Pasiaord Pt | Gsciocanneet | =
-
T L Ve Tratw e Bocimats e
il- Sl n
m_ e | | port [|+
|' sy | |

0 Now that your site’s connection information

is saved in the Site Manager, you can connect

to your Web host’s FTP server without retyping
everything each time. On Mac or Windows, return
to the Site Manager (via the server icon or the
menu in), select your site from the list, and
select Connect (@. Alternatively on Windows, as
shown in the bottom figure here, you can activate
the down arrow next to the server icon (on the far
left) and then choose your site’s name from the
menu that displays. FileZilla will connect to the
server.

I —
bt vty

o
Craste denctory
Betres:
[

Rerams
e . |

erp—— r—

G In the right part of the window, select the
server’s destination directory. In the left part of
the window, navigate to the directory on your
computer that contains the files you want to
upload. Then right-click the file or folder you wish
to upload to the server, and select Upload.

Fiename [
=] =]

L

ELO0LC

L e | B |

1 e a4 deectories. Tots s 115 Byt i deeacey

0 The newly transferred folder appears in the
frame on the right side of the window. Follow the
same process for all the files and folders you want
to transfer to your site. Or, to transfer several at
once, select multiple files or folders and then right-
click to select Upload.

526 Chapter 21

Server Bookmarks Help

Cancel current operation

Reconmneck TR
Disconnect CTRL+D

Search remate Files. ., F3
Enker custom command, ..
Force showing hidden Files

@ Choose Server > Disconnect
once you're finished.

To transfer files to the
server with Filezilla:

1.
2.

Open FileZilla.

Select the down arrow next to the
server icon (on the far left, just below
the main menu). Then choose your
site’s name from the menu that dis-
plays @). FileZilla will establish a con-
nection with your server.

On the right side of the window, navi-
gate to the server directory to which
you want to upload files.

On the left side of the window, navigate
to the directory on your computer that
has the files you want to upload.

Right-click the desired file or folder in
the left frame, and choose Upload from
the menu that appears (3. The files are
transferred (@ (this will take longer for
large files, like videos). You may also
transfer files in the other direction (see
the first tip).

Your site updates are live now. Browse
your site at www.yourdomain.tld
(where yourdomain.tld is the domain
you registered; .tld is the top-level
domain, which will be .com unless you
registered a domain with a different
extension) to make sure everything is
working properly. Edit any of the files
on your computer as necessary, and
upload them to your server by following
steps 3 through 5 (you may need to do
step 2 again if a lot of time has passed).
Repeat this step until the site is as you
intend it.

Close FileZilla or choose Server >
Disconnect from the main menu once
you’ve finished transferring files @.

continues on next page

Publishing Your Pages on the Web 527

www.yourdomain.tld

You can also transfer files from your site’s
server to your computer. To do so, right-click
files or folders in the right-hand frame and
choose Download from the menu that appears.

FileZilla is just one of many FTP clients
available. Some other popular ones for Mac
OS X are CyberDuck (free, http://cyberduck.ch),
Transmit (www.panic.com/transmit), and Fetch
(http://fetchsoftworks.com). Mac OS X also

has built-in FTP capability (see http://osxdaily
.com/2011/02/07/ftp-from-mac/). Search online
for “FTP client” to find more for both Windows
and Mac. They all work similarly, but some
have more features than others.

When you transfer files and folders, they
are copied to the destination folder. The source
location retains its version of the assets.

Your FTP program might prompt you
(FileZilla does) to be sure you want to over-
write a file or folder if you transfer one that the
destination already contains. Each FTP client
is different, though, so it’s possible it won’t ask
for your permission. Try it on a test file to learn
how your FTP client handles such a situation.

Relative URLs in your code are main-
tained when you transfer a folder to the server.

If your site doesn’t load when you visit its
URL, it could be a few things. First, double-
check that you uploaded the files to the
proper directory. Often, your pages belong in a
directory called public_html, www, or some-
thing similar. Your Web host’s instructions
should specify the proper location; ask them

if you aren’t sure. If you’ve got the files in the
right place and the site still doesn’t show, the
problem might be your domain’s name server
settings (see the “Connecting Your Domain
and Your Web Host” sidebar).

If you’ve uploaded a new version of a
file to your server but don’t see the change
when you visit your site, clear your browser’s
cache and check the page again. Search the
browser’s Help section if you aren’t sure how
to clear the cache.

You can resize the window of most FTP
clients to show more (or fewer) files at a time.
Just click and drag the lower-right corner.

528 Chapter 21

http://cyberduck.ch
www.panic.com/transmit
http://fetchsoftworks.com
http://osxdaily.com/2011/02/07/ftp-from-mac/
http://osxdaily.com/2011/02/07/ftp-from-mac/

Index

/*, */, using for CSS comments, 182

: (colon) versus = (equals) sign, 205

; (semicolon), using with CSS properties, 205
<!--, -->, using for HTML comments, 97

3D, positioning elements in, 318-319

320 and Up, 351

A

a element. See anchors
AAC audio file format, 468
abbr element, 118-119
abbreviations, explaining, 118—-119
absolute versus relative URLs, 21-23
accessibility. See also ARIA (Accessible Rich
Internet Applications), and screen readers
advocates, 91
explained, 11
HTML5 media, 467
active links, 230
:active pseudo-class, 231
address element
defining contact information with, 102—-103
using with article element, 70
Adobe Fireworks, 153, 155
Adobe Photoshop, 153-155
finding image sizes, 159
mockups, 359
scaling images, 161
::after pseudo-element, 229

aligning
elements vertically, 322
text, 268-269

alt attribute, 157

alternate text, 157

anchors. See also links
creating, 172-173, 175-177
linking to, 174

animated images, saving, 151

Apple’s Link Maker, 177

ARIA (Accessible Rich Internet Applications),

88-91. See also accessibility

formrole, 91
landmark roles, 88—89
role="bannexr" definition, 89
role="complementary" definition, 90
role="contentinfo" definition, 90
role="main" definition, 89
role="navigation" definition, 89
screen reader test results, 90
spec, 91

ARIA landmark roles. See landmark roles
versus ids, 284-285
overlap with HTML5 elements, 88
recommendation, 90
styling elements with, 284-285

article element, 68-71
address element, 70
children of, 15

Index 529

article element (continued)
contentin, 9
examples, 70-71
footer element, 70
nesting, 69
nesting content in, 9
providing contact information, 102—-103
versus section element, 69, 73, 283
ASCII characters, 16
aside element, 75-79
examples, 78-79
versus figure element, 77
restrictions, 77
as sidebar, 76-77
assistive technologies, 54. See also screen
readers
Ates, Faruk, 377
attribute selectors, 232-235. See also
selectors
attribute values, enclosing in quotes, 510
attributes
contents of, 14
numeric values, 15
values, 14-15
audio
Flash and hyperlink fallback, 478—479
Flash fallbacks, 476—-477
hyperlink fallbacks, 475
audio attributes
autoplay, 471
controls, 471
loop, 471
muted, 471
preload, 471, 473
src, 471
audio controls, 470
audio element, 471
audio file formats
AAC, 468
MP3, 468
MP4, 468
Ogg Vorbis, 468
type attribute, 474
WAV, 468
audio files
adding to Web pages, 469-470
preload attribute, 471, 473

audio in loop
autoplay attribute, 472
controls attribute, 472
audio sources, multiple, 474-475
author contact information, adding, 102-103
autoplay
audio attribute, 471-472
video attribute, 454-457

b element, 1M1
redefinition of, 111
versus strong element, 110
background color
choosing, 297
fallback, 391
background images
controlling attachment of, 295
multiple, 388
repeating, 294
specifying position of, 295
using, 294
background properties, 262—-263, 296-297
background-attachment property, 295
background-color property, 296, 388—-389
background-image property, 294, 388—-389
background-position property, 295, 297,
388-389
background-repeat property, 294, 388-389
backgrounds. See also gradient backgrounds
applying, 388-389
changing, 294-297
changing for text, 260-263
creating, 297
multiple, 388
BART’s site, 329
BBEdit text editor, downloading, 29
bdi element, 139-141
logical order, 140
visual order, 140
bdo element, 139-141
logical order, 140
visual order, 140
Beaird, Jason, 27
::before pseudo-element, 229
Bester, Michael, 196
block-level elements, 7

530 Index

block-level links, 168—170
blockquote element, 113-115
nesting with q elements, 115
as sectioning root, 115
body element, 44
bold formatting
applying, 248-249
removing, 248
BOM, Web resource for, 32
border properties, setting, 312
border style, defining, 311
border-image property, 313
border-radius property, 376, 378-381
borders
adding to images, 156
colors, 311
deleting from images, 156
setting, 311-313
shortcuts, 312-313
widths, 311
Boston Globe, 332
box model, 292-293
box-shadow property, 384-386
br element
coding, 133
using with white-space property, 267
browser developer tools
Chrome Developer Tools, 507
Firebug for Firefox, 507
Internet Explorer, 507
Opera Dragonfly, 507
Safari Web Inspector, 507
browsers
capabilities, 518
compatibility, 375
considering in layouts, 276-277
default style sheets, 7
finding image sizes, 158
Graded Browser Support, 518
styling HTML5 elements in, 286—-289
support for, 448
testing, 518
viewing Web pages in, 37-38

C

calendar date, specifying, 107
Camen, Kroc, 466

canvas element, using with video, 485
capitalize value, using with text-transform,
270
captions, creating for figures, 104-105
Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)
character encoding, specifying, 16
characters, reading right-to-left, 139-141
@charset declaration, using with style
sheets, 199
checkboxes, creating, 440
Chrome
Developer Tools, 507
verifying sites in, 518
circles, creating with border-radius, 380
citations, indicating, 112
cite element, 112
Clark, Keith, 351
Clarke, Andy, 351
class attribute. See also pseudo-classes
assigning to elements, 92-94
versus id attributes, 94
versus id selectors, 220
naming, 94
selecting elements by, 218-220
using with microformats, 92-94
clear property, using with floats, 308-310
client side vs. server side, 421
Coda text editor, 29
code
indenting, 5
marking up, 128
validating, 508, 514-515
code element, 128
codecs, 452
colon (:) versus equals (=) sign, 205
color, setting, 258-259. See also CSS colors
ColorZilla’s gradient generator, 393
comments, 282. See also HTML comments
adding to style rules, 182-183
conditional, 351
compressing files, 177
conditional comments, 351
contact information, adding, 102—-103
containers
creating, 84-87
wrapping around content, 84-85

Index 531

content. See also text content
separating from presentation, 276
syndicated, 57

controls
audio attribute, 471-472
video attribute, 454-456

corners
elliptical, 380
rounding, 378-381

Coyier, Chris, 322

Creative Commons licenses, 152

CSS (Cascading Style Sheets)
adjacent sibling combinator, 226
colliding rules, 184-187
comments for style rules, 182-183
style rules, 181

CSS code, viewing, 212

CSS colors, 190. See also color

HSL, 193-196
HSLA, 193-196
RGB, 191

RGBA, 192-196
CSS errors, checking, 515
CSS properties
bare numbers, 189
hexadecimal colors, 191
inherit value, 188
lengths, 188-189
percentages, 188-189
predefined values, 188
URLs, 190
using ; (semicolon) with, 205
CSS reset, beginning main style sheet
with, 290
CSS Tricks, 395
CSS troubleshooting
browser support, 513
curly braces, 512
declarations, 512
developer tools, 513
linking HTML documents, 513
property/value pairs, 512
punctuation, 513
separating properties from values, 512
spaces, 512-513
</style> end tag, 513
values, 512

CSS1, introduction of, 8
CSS3
backgrounds, 388—-389
browser compatibility, 375
drop shadows, 382-387
general sibling combinator, 226
gradient backgrounds, 390-393
opacity elements, 394-395
polyfills for progressive enhancement,
376-377
rounding corners of elements, 378-381
vendor prefixes, 373-374
CSS3 Generator, 374
CSS3 selectors, resource for, 239
cursor property
auto value, 323
crosshair value, 323
default value, 323
move value, 323
pointer value, 323
progress value, 323
text value, 323
wait value, 323
x-resize value, 323
cursors, changing, 323
custom markers. See also markers
displaying, 405
URLs (Uniform Resource Locators), 405
using, 404-405
CyberDuck FTP client, 528

D

datetime attribute, 106-108
debugging techniques
checking HTML, 510-511
syntax highlighting, 506-507
default page, specifying, 33—34. See also
HTML pages; Web pages
default styles. See also styles
normalizing, 290-291
resetting, 290-291
default.htm page, 33
defining terms, 120
del element, 124-127
deleting, borders from images, 156
description list (d1). See also lists
creating, 414-415

532 Index

dt and dd elements, 413
name-value groups, 412
nesting, 415
Devlin, lan, 467, 487
dfn (definition) element, 120
Digital Rights Management (DRM), 481
disabled attribute, 447
display property, 324
block value, 325
inline value, 325
inline-block value, 325
none value, 325
div element
applying styles to, 85
best practices, 86
examples, 87
as generic container, 84-87
versus span element, 85
structuring pages with, 279
surrounding content, 84
using with JavaScript, 85
d1 (description list). See also lists
creating, 414-415
dt and dd elements, 413
name-value groups, 412
nesting, 415
DOCTYPE
case insensitivity, 45
rendering in browsers, 45
for XHTML Strict document, 45
<!DOCTYPE html> declaration, 4, 24
document outline, 50-55
algorithm, 57
assistive technologies, 54
explicit semantics, 53
ha-hé hierarchy, 51
screen readers, 54
sectioning elements, 51-52, 55
document structure, inspecting, 511
document.createElement(), 287
documents. See also HTML documents; Web
pages
ending, 5
saving, 35
structuring, 278
domain name
connecting to Web host, 524
getting, 522

Dribbble site, 376
DRM (Digital Rights Management), 481
drop shadows
adding to elements, 384-387
adding to text, 382—-383
drop-down navigation, using nested lists for,
an
Dunham, Ethan, 360-361

E
editing Web pages, 35
edits, noting, 124-127
Electric Mobile Simulator for Windows, 347
element box
controlling appearance of, 293
positioning, 293
elements, 13—-14. See also pseudo-elements
adding padding around, 304-305
aligning vertically, 322
ancestors, 221
applying styles to groups of, 236—237
auto value for width, 300
contents of, 13
descendants, 221
displaying, 324-326
empty, 13
end and start tags, 511
end tag, 13
floating, 306-310
formatting, 93
hiding, 324-326
naming with classes or IDs, 92-94
nesting, 15
offsetting in natural flow, 314-315
overlap with landmark roles, 88
positioning absolutely, 316—-317
positioning in 3D, 318—-319
rounding corners of, 378—381
selecting based on adjacent sibling, 226
selecting based on ancestors, 222-223
selecting based on attributes, 232-235
selecting based on child, 224-226
selecting based on parents, 223-224
selecting based on type, 217
selecting by class or id, 218-220
selecting by context, 221-226
selecting by name, 216-217

Index 533

elements (continued)

selecting first letters of, 228

selecting first lines of, 227

selecting parts of, 227-229

setting height or width, 298-301

space and forward slash, 13

specifying groups of, 236-237

start and end tags, 511

start tag, 13

styling in browsers, 286—289

typing names of, 14

void, 13, 511
elliptical corners, creating, 380
em element, 110

calculating values for indents, 265

versus i, 110-111

versus mark, 117

using with paragraphs, 10
email boxes, creating, 432-433
embedded scripts, adding, 502
embedded style sheets, creating, 202-203
emulators, using with mobile devices, 347
encoding, choosing for files, 32
end tags, including in elements, 13
.eot (Embedded OpenType) Web fonts, 354
equals (=) sign versus colon (), 205
event handlers. See JavaScript events
external scripts, loading, 499
external style sheets. See also style sheets

benefits of, 200

changing, 200

creating, 198-199

@import rules in, 207

importing, 199

linking to, 199-201

rules, 201

URLs in, 201

F

family trees, creating for Web pages, 15
Faulkner, Steve, 91, 168
favicons
adding to Web sites, 162-163
saving, 163
Featherstone, Derek, 168
Ferg, Stephen, 489

Fetch FTP client, 528
fieldset element, 426-427
figcaption element, 104-105
figure element
versus aside element, 77
using, 104-105
figures, creating, 104-105
file extensions, using with text editors, 32
file names
dashes between words, 19, 24
extensions, 19
filename, marking up, 128
.htm and .html extensions, 19, 30-31
lowercase, 19, 24
file scheme, 20
file uploads, allowing, 442
files
choosing encoding for, 32
compressing, 177
hiding, 34
naming, 36
organizing, 36
transferring to servers, 525-528
viewing, 35
FileZilla, transferring files to server with, 527
fine print, specifying, 132
Firebug for Firefox, 212, 507
Firefox, verifying sites in, 518
i:first-letter syntax, 229
::first-line syntax, 229
Firtman, Maximiliano, 351
Flash animation, embedding, 482-483
Flash fallback player, 463
Flash fallbacks
audio, 476-477
and hyperlink fallback for audio, 478-479
and hyperlink fallback for video, 465-466
video, 464-465
float property
clearfix method, 310
left value, 306
none value, 307
overflow method, 310
right value, 306
using clear property with, 308-310
focus links, 230
folder names, lowercase, 24

534 Index

folders

naming, 36

organizing files in, 36

sub-folders, 36

using, 370
font declarations, combining, 257
font families

naming, 364

setting, 243
font files, organizing in folders, 370
font names

generic, 245

with non-ASCII characters, 243

using quotes with, 243
font size

% unit, 250, 251-252, 254

child of element, 254

em unit, 251-252, 254

ex unit, 254

parent element, 254

pt unit type, 253

px unit, 250-254

rem unit, 254

setting, 250-254
Font Squirrel, 355-356, 358, 366
font values, setting all, 256-257
Fontdeck service, 356
@font-face feature, 355, 360-364

rule, 360

syntax, 360

using, 370
font-family property, 243-244, 247
fonts. See also Web fonts

defaults, 244

specifying, 244-245
Fonts.com service, 356
FontShop, 356
Fontspring Web site, 361
font-style: italic, 247
font-variant property, 271
font-weight: bold, 248
font-weight: normal, 248
Food Sense home page, 330-331
footer element, 80-83

contents of, 81

examples, 82—-83

placement of, 81

restrictions, 81

using with article element, 70

using with role="contentinfo", 81
footer links, placing nav elements in, 65
footers, creating, 80-83
form data, sending via email, 424-425
form elements

for attribute, 435

disabling, 447

id attribute, 435

organizing, 426-427

output, 448

title attribute, 435
form input attributes, 428
form parts, labeling, 434—-435
form element, 419
forms

creating, 419-420

disabled attribute, 447

fieldset element, 426-427

get method, 442

hidden fields in, 443

legend element, 426-427

processing, 421-423

resource for, 448

security, 423

submitting with images, 446
fractional values, indicating, 142-143
FTP clients

CyberDuck, 528

Fetch, 528

FileZilla, 525-528

resizing windows of, 528

Transmit, 528
FTP sites, defining properties for, 526

G

Gallagher, Nicolas, 123, 290
Gasston, Peter, 334
generic containers
creating, 84-87
div element, 84-87
GIF format
color, 149
images, 148
lossless, 151
transparency, 151

Index 535

Google Apps, 518
Google Closure Compiler, 501
Google WebFonts, 356
Graded Browser Support, 518
gradient backgrounds, 390-393. See also
backgrounds
gradient generator, 393
grouping
headings, 58-59
selectors, 237
groups of elements, specifying, 236-237

H

H.264 video file formats, 452
ha heading, using, 9
h1-h6 elements, 48

sizes of, 49

using consistently, 49, 55
HandBrake video converter, 452
hanging indent, creating, 265
hasLayout, 395
head element

explained, 44

indenting code nested in, 45
header element, 61-63, 279
headers

creating, 61-63

versus headings, 63

nav element, 63

restrictions, 63

using, 63
headings, 282

adding ids to, 49

creating, 48—-49

grouping, 58-59

versus headers, 63

lang attribute in, 49

in search engines, 49

using, 9, 48
height: property

versus min-height, 300

setting, 298-299
height video attribute, 454
hexadecimal colors, 191
hgroup element, 58-59
hh:mm:ss format, 108

hidden fields
creating, 443
readonly attribute, 443
hiding files, 34
highlighting text, 116-117
homepage, specifying, 33-34
host, finding for sites, 523-524
hover links, 230
thover pseudo-class, 231
href attribute
beginning with #, 172
values in, 15
HSL and HSLA color, 193-196
HSL Color Picker, 194-195
.htmand .html extensions, 19, 30-31
HTML
checking, 514
markup, 6
semantic, 6, 24
start and end tags, 511
validating, 515
HTML code, viewing, 39
HTML comments. See also comments
adding, 96-97
restrictions, 97
syntax, 97
HTML documents, beginning, 24. See also
documents
HTML elements
block-level, 7
displaying, 6-8
inline, 7
HTML forms. See forms
HTML Lint, 515
HTML markup, components, 24. See also
markup
HTML pages. See also default page; Web
pages
above <body> start tag, 4
basic page, 3
carriage returns, 3
DOCTYPE, 4, 24
ending documents, 5
foundation, 43
ha heading, 9
headings, 9
images, 9
links, 10

536 Index

organizing in folders, 370
paragraphs, 10
semantics, 9-10
testing, 516—-517
text content, 3,5
title element, 4
HTML troubleshooting
attribute values, 510
character formatting, 510
element nesting, 510
typos, 510
</html> end tag, 5
html element, 45
HTML5
DOCTYPE, 45
formatting code, 515
new forms features, 448
Outliner, 52
phrasing content, 7
semantics, 8—9
“HTMLS5 Canvas: The Basics,” 487
HTMLS5 elements, 13-14. See also pseudo-
elements
adding padding around, 304-305
aligning vertically, 322
ancestors, 221
applying styles to groups of, 236-237
auto value for width, 300
contents of, 13
descendants, 221
displaying, 324-326
empty, 13
end and start tags, 511
end tag, 13
floating, 306-310
formatting, 93
hiding, 324-326
naming with classes or IDs, 92-94
nesting, 15
offsetting in natural flow, 314-315
overlap with landmark roles, 88
positioning absolutely, 316—317
positioning in 3D, 318-319
rounding corners of, 378—381
selecting based on adjacent sibling, 226
selecting based on ancestors, 222-223
selecting based on attributes, 232-235
selecting based on child, 224-226

selecting based on parents, 223-224
selecting based on type, 217
selecting by class or id, 218-220
selecting by context, 221-226
selecting by name, 216-217
selecting first letters of, 228
selecting first lines of, 227
selecting parts of, 227-229
setting height or width, 298-301
space and forward slash, 13
specifying groups of, 236-237
start and end tags, 511
start tag, 13
styling in browsers, 286—-289
typing names of, 14
void, 13, 511

HTMLS5 pages. See also Web pages
body section, 44
head section, 44
starting, 43—-44

HTMLS5 shiv, 287

HTMLS5 Video, 487

htmls.js, downloading, 289. See also

HTML5 shiv

http scheme, 20

https://, using, 431-432

Hudson, Roger, 489

hyperlink fallbacks
audio, 475
video, 461-462

i element, 1M1

redefinition of, 111

versus em element, 110
icons, adding for Web sites, 162-163
id attribute

versus class attribute, 94

naming elements with, 92—-94

selecting elements by, 218-220
id vs. class selectors, 220
ids versus ARIA landmark roles, 284—-285
image editors

Adobe Fireworks, 153

Adobe Photoshop, 153

choosing, 153

scaling images with, 161

Index 537

image size, specifying, 158—-159
images, 17. See also poster images
adding borders to, 156
adding to pages, 9
alternate text, 157
animation, 151
color, 149
Creative Commons licenses, 152
deleting borders from, 156
format, 148
getting, 152
GIF format, 148, 151
including in HTML pages, 9
inserting on pages, 156
JPEG format, 148, 150
missing, 519
pixels, 149
PNG format, 148, 151
saving, 154-155, 519
scaling with browsers, 160
scaling with image editor, 161
size and resolution, 149-150
speed, 150-151
transparency, 151
troubleshooting, 519
using to submit forms, 446
img element, using, 9
@import rules
in external style sheets, 207
in style element, 206
limportant, marking styles with, 207
indenting code, 5, 45
indents
adding, 265
removing, 265
index.html default page, 33-34
inline elements, 7
inline scripts, 500
inline styles, applying, 204-205
ins element, 124-127
inset shadow, creating, 385
Internet Explorer
Developer Tools, 507
Gradient filter, 195-196
recognizing CSS, 287
verifying sites in, 518
iOS Simulator, 347

iPad
rendering, 345
testing pages for, 347
iPhones
support for media queries, 341
testing pages for, 347
Irish, Paul, 377
ISP, using as Web host, 523
italics, creating, 246-247

J

JavaScript
adding to Web pages, 499-500
document.createElement(), 287
inline scripts, 500
libraries, 498
Modernizr library, 287

polyfills for progressive enhancement,

376-377
JavaScript events
onblur, 503
onchange, 503
onclick, 503
ondblclick, 503
onfocus, 503
onkeydown, 503
onkeypress, 504
onkeyup, 504
onload, 504
onmousedown, 504
onmousemove, 504
onmouseout, 504
onmouseover, 504
onmouseup, 504
onreset, 504
onselect, 504
onsubmit, 504
touch-based handlers, 504
touchend, 504
touchmove, 504
touchstart, 504
JAWS screen reader, 91
Jehl, Scott, 348
Johansson, Roger
“Bring On the Tables,” 489
@font-face code, 370

538 Index

Johnston, Jason, 377

JPEG format, 148, 150
jQuery JavaScript library, 498
JW Player, 463

K

kbd element, 129

Keith, Jeremy, 332
kerning, specifying, 264
-khtml- prefix, 373
Kiss, Jason, 91

Kissane, Erin, 27

L

label element
example of, 14
using with forms, 434
landmark roles
versus ids, 284-285
overlap with HTML5 elements, 88
recommendation, 90
styling elements with, 284-285
lang attribute, 43
in headings, 49
using with q element, 114
layout with styles. See also styles
approaches, 277-278
background color, 296
background images, 294-295
background properties, 296-297
box model, 292-293
browsers, 276-277
content and presentation, 276
layouts
elastic, 278
fixed, 277
fluid, 277-278
The League of Moveable Type, 355-356
“Learning SVG,” 487
legend element, 426-427
letter spacing, setting, 264
1i (list item) elements, 398—400
line break, creating, 133, 137
line height, setting, 255
line spacing, fixing, 123

linking thumbnail images, 177
links, 17. See also anchors
active, 230
block-level, 168-170
changing appearance of, 230
creating, 167-170
defining, 10
defining rules for, 231
designating for navigation, 65
destination, 166
focus, 230
hover, 230
labels, 166, 170
LVFHA mnemonic, 231
marking up groups of links with, 399
nesting in nav element, 64
opening, 171
selecting based on states, 230-231
structuring in ul and ol elements, 65
target attribute, 171
visited, 230
wrapping in nav element, 66-67
list content, placement of, 400
list item (1i) elements, 398—400
list numbering, starting, 403
list type, choosing, 399
lists. See also d1 (description lists); nested lists
choosing markers, 401-402
creating, 398-400
custom markers, 404-405
displaying without markers, 402
hanging markers, 406
indenting, 400
nesting, 400
ordered (ol), 398-400
right-to-left content direction, 400
start value, 403
unordered (ul), 398-400
value attribute, 403
list-style properties, setting, 407
list-style-type property, 401
loop
audio attribute, 471
video attribute, 454
lowercase value, using with text-transform,
270

Index 539

mailto scheme, 20

Marcotte, Ethan, 331

margins
auto value, 302-303
setting around elements, 302-303
setting values for, 301

mark element, 116117

markers. See also custom markers
choosing for lists, 401
controlling hanging, 406
inside value, 406
outside value, 406

markup, defined, 1, 6. See also HTML markup

math element, 129

mathML element, 129

max-width property, setting, 299
McLellan, Drew, 483

@media at-rule, using in style sheets, 208-209

media queries
building pages adapting with, 349-350
chaining features and values, 336
content and HTML, 340-341
declarations in rules, 338
defining, 336-337
design implementation, 341-342
evolving layout, 343-346
examples, 334-336, 344-345
feature: value pair, 335
features of, 333-334
iPhone 4, 351
logic portion, 335
min-width and max-width, 348
Opera Mobile 11 browser, 351
rendering styles in Internet Explorer, 348
syntax, 334-336
type portion, 335
width feature, 338
media sources, source element, 460
media-specific style sheets, 208-209
meta element, 339
meter element
versus progress element, 143
using, 142-143
Meyer, Eric, 290
min-height versus height, 300
Miro Video Converter, 452

Mobile Boilerplate, 347, 350
mobile coding tools, 346
mobile devices, HTML5 and CSS3 support
for, 351
“mobile first” design, 332
mobile phones. See also responsive Web
design
base styling, 340
building baseline for, 341-342
building for desktop, 342
building sites for, 328-332
testing pages on, 347
Mobile Safari’s viewport, 335
Modernizr JavaScript library, 287, 348, 377
monospaced font, rendering, 129
MooTools JavaScript library, 498
-moz- prefix, 373, 378-379
MP3 audio file format, 468
MP4
audio file format, 468
video file formats, 452
-ms- prefix, 373
multimedia files, getting, 480
multimedia resources, 487
muted
audio attribute, 471
video attribute, 454
MyFonts, 356

nav element, 64-67
in headers, 63
nesting links in, 64
placing footer links in, 65
restrictions, 65
role attribute, 64
using with screen readers, 65
wrapping links in, 66—67
navigation
with keyboard, 170
marking, 64—-67
Neal, Jonathan, 123, 290, 466
nested lists. See also lists
drop-down navigation, 411
:hover pseudo-class, 411
selectors, 409
styling, 408-411

540 Index

none value, using with text-transform, 270 online resources (continued)

normalize.css, 123, 290-291 forms, 428
Notepad text editor, using, 28-30 Google Apps, 518
NVDA screen reader, 91 Google Closure Compiler, 501
Google WebFonts, 356
0 Graded Browser Support, 518
Ogg Theora video file formats, 452 gradient backgrounds, 392
Ogg Vorbis audio file format, 468 gradient generator, 393
ol (ordered list) HandBrake, 452
Arabic numerals, 409 hasLayout, 395
creating, 398-400 HTML forms, 428
marker types, 402 HTML Lint, 515
using with links, 65 “HTML5 Canvas: The Basics,” 487
onblur JavaScript event, 503 HTMLS5 Video, 487
onchange JavaScript event, 503 HTML5’s new features, 448
onclick JavaScript event, 503 iOS Simulator, 347
ondblclick JavaScript event, 503 JavaScript events, 504
“One Web” presentation, 332 JavaScript libraries, 498
onfocus JavaScript event, 503 jQuery JavaScript library, 498
onkeydown JavaScript event, 503 JW Player, 463
onkeypress JavaScript event, 504 The League of Moveable Type, 355-356
onkeyup JavaScript event, 504 “Learning SVG,” 487
online resources Meyer reset, 290
320 and Up, 351 Miro Video Converter, 452
Apple’s Link Maker, 177 Mobile Boilerplate, 347, 350
ARIA spec, 91 mobile devices, 351
BOM, 32 “mobile first” design, 332
browser compatibility, 375 Modernizr, 287, 348, 377
browser developer tools, 507 MooTools JavaScript library, 498
Coda text editor, 29 multimedia, 487
collapse value for visibility, 326 MyFonts, 356
ColorZilla’s gradient generator, 393 normalize css, 123
conditional comments, 351 “One Web” presentation, 332
Creative Commons licenses, 152 PHP server-side language, 422
CSS error checking, 515 polyfills, 377
CSS Tricks, 395 ProtoFluid, 347
CSS3 Generator, 374 right-to-left languages, 141
CSS3 selectors, 239 showform.php script, 420
developer tools, 507 SitePoint, 520
Electric Mobile Simulator for Windows, 347 Stack Overflow, 520
event handlers, 504 Sublime Text editor, 29
Firebug for Firefox, 212 table structures, 489
Font Squirrel, 355-356, 358, 366 text editors, 29
Fontdeck service, 356 TextMate, 29
Fonts.com service, 356 TextWrangler, 28
FontShop, 356 Typekit service, 356-357, 359
Fontspring, 361 validating code, 515

Index 541

online resources (continued)

video, 487

video converters, 452

“Video for Everybody,” 466

Video for Everybody Generator, 466

“Video on the Web,” 487

Web Font Specimen, 357

WebINK service, 356

WebVTT (Web Video Text Tracks), 467

“WebVTT and Video Subtitles,” 487

Wufoo, 448

YouTube video, 484

YUl Compressor, 501

YUI JavaScript library, 498
onload JavaScript event, 504
onmousedown JavaScript event, 504
onmousemove JavaScript event, 504
onmouseout JavaScript event, 504
onmouseover JavaScript event, 504
onmouseup JavaScript event, 504
onreset JavaScript event, 504
onselect JavaScript event, 504
onsubmit JavaScript event, 504
opacity, setting for elements, 394-395
Opera

Dragonfly, 507

verifying sites in, 518
ordered list (ol)

Arabic numerals, 409

creating, 398-400

marker types, 402

using with links, 65
outline algorithm, 57
output form element, 448
overflow, treatment by browsers, 320-321
overflow property

auto value, 320

hidden value, 320

scroll value, 320

visible value, 320-321

P

p element, using, 100

padding
adding around elements, 304-305
-bottom suffix, 305
-left suffix, 305

-right suffix, 305

-top suffix, 305
page constructs

information, 60

layout, 60

semantics, 60
pages. See HTML pages; Web pages
paragraphs

a element, 10

em element, 10

inspecting, 511

marking up, 10

starting, 100—-101
parents and children, 15
password boxes, creating, 431
passwords, protecting, 431
patterns, finding, 433
Pfeiffer, Silvia, 487
Photoshop, 153-155

finding image sizes, 159

mockups, 359

scaling images, 161
PHP server-side language, 421-423
phrases, quoting, 114
pixels, 149
placeholder value, representing, 129
placeholders versus labels, 434
player.swf file, 463
plugins, 18, 451
PNG format, 148

alpha transparency, 151

color, 149

lossless, 151

polyfills, using for progressive enhancement,

376-377
position: absolute, 316
position: fixed, 317
position: relative, 314-316
position: static, 317
positioning, relative, 314-315

poster images, specifying for videos, 457. See

also images
poster video attribute, 454
Powers, Shelley, 487
pre element, 130-131
math-related markup, 129
using with white-space property, 267

542 |ndex

preload
audio attribute, 471, 473
video attribute, 454, 458
print, fine, 132
progress element
versus meter element, 143
using, 144-145
progressive enhancement
applying, 330-331
Dribbble site, 376
using polyfills for, 376-377
pronunciation, indicating, 138
ProtoFluid, downloading, 347
pseudo-classes, 229. See also class attribute
sactive, 231
shover, 231
pseudo-elements. See also elements
s:after, 229
::before, 229
s:first-letter, 229
s:first-line, 229
pubdate attribute, 106-107
specifying, 109
using with time, 109

Q

q element, 114-115
quotes
enclosing attribute values in, 510
using with font names, 243
quoting
phrases, 114
text, 113-115

radial gradients, 391
radio buttons

creating, 436—437

name attribute, 436

value attribute, 436-437
readonly attribute, using with hidden fields, 443
references, indicating, 112
regular expressions, use of, 433
relative positioning, 314-315
relative URLs

versus absolute URLs, 21-23

using, 169

Resig, John, 287
resources
320 and Up, 351
Apple’s Link Maker, 177
ARIA spec, 91
BOM, 32
browser compatibility, 375
browser developer tools, 507
Coda text editor, 29

collapse value for visibility, 326
ColorZilla’s gradient generator, 393

conditional comments, 351
Creative Commons licenses, 152
CSS error checking, 515

CSS Tricks, 395

CSS3 Generator, 374

CSS3 selectors, 239

developer tools, 507

Electric Mobile Simulator for Wind
event handlers, 504

Firebug for Firefox, 212

Font Squirrel, 355-356, 358, 366
Fontdeck service, 356
Fonts.com service, 356
FontShop, 356

Fontspring, 361

forms, 428

Google Apps, 518

Google Closure Compiler, 501
Google WebFonts, 356

Graded Browser Support, 518
gradient backgrounds, 392
gradient generator, 393
HandBrake, 452

hasLayout, 395

HTML forms, 428

HTML Lint, 515

“HTML5 Canvas: The Basics,” 487
HTMLS5 Video, 487

HTML5’s new features, 448

iOS Simulator, 347

JavaScript events, 504
JavaScript libraries, 498

jQuery JavaScript library, 498
JW Player, 463

ows, 347

The League of Moveable Type, 355-356

“Learning SVG,” 487
Meyer reset, 290

Index 543

resources (continued)
Miro Video Converter, 452
Mobile Boilerplate, 347, 350
mobile devices, 351
“mobile first” design, 332
Modernizr, 287, 348, 377
MooTools JavaScript library, 498
multimedia, 487
MyFonts, 356
normalize css, 123
“One Web” presentation, 332
PHP server-side language, 422
polyfills, 377
ProtoFluid, 347
right-to-left languages, 141
showfoxrm.php script, 420
SitePoint, 520
Stack Overflow, 520
Sublime Text editor, 29
table structures, 489
text editors, 29
TextMate, 29
TextWrangler, 28
Typekit service, 356-357, 359
validating code, 515
video, 487
video converters, 452
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
Web Font Specimen, 357
WebINK service, 356
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
Wufoo, 448
YouTube video, 484
YUI Compressor, 501
YUl JavaScript library, 498
respond.js script, 348, 351

responsive Web design, 331-332, 341-342.

See also mobile phones
defining styles for breakpoints, 343
grid-based layout, 331
images and media, 331
media queries, 331, 343
pixel widths, 343, 346

reversed attribute, 400
RGB color, 191

RGBA color, 193-196

role attribute, using with nav element, 64

role="banner" definition, 89

role="complementary" definition, 90

role="contentinfo," using with footer
element, 81

role="contentinfo" definition, 90

role="main," using with article element, 69

role="main" definition, 89
role="navigation" definition, 89
rp element, 138-139

rt element, 138-139

ruby element, 138-139

S

s element, 126127
Safari
verifying sites in, 518
Web Inspector, 507
samp element, 129
saving
animated images, 151
changes to documents, 35
favicons, 163
files as UTF-8, 45
images, 154-155, 519
Web pages, 30-32
Scalable Vector Graphics (SVG)
coupling with video, 486
Web fonts, 354
scaling images
with browser, 160
with image editor, 161
with Photoshop, 161
screen readers, 12, 54
availability of, 91
JAWS, 91
landmark role support, 91
nav element, 65
NVDA, 91
VoiceOver, 91
script element
best practices, 501
blocking behavior, 501
processing, 502
</script> end tab, 502
src attribute, 499

544 Index

scripting best practices, 501
scripts
adding embedded, 502
Google Closure Compiler, 501
loading external, 499
YUI Compressor, 501
search engine optimization (SEO), 12
section element
versus article element, 69, 73, 283
example, 74
terminology, 50
using, 72-74
using with role="main", 69
sections, defining, 72-74
secure server, using, 431
Seddon, Ryan, 377
select boxes
creating, 438—439
grouping options, 439
option element, 438—439
select element, 438
size attribute, 438—-439
selectors. See also attribute selectors
combining, 238-239
constructing, 214-215
grouping, 237
semantics
accessibility, 11
displaying HTML, 12
importance of, 11-12
screen readers, 12
semicolon (;), using with CSS properties, 205
SEO (search engine optimization), 12
server, transferring files to, 525-528
server side vs. client side, 421
Sexton, Alex, 377
shims, using for progressive enhancement,
376-377
showfoxrm.php script, downloading, 420
sidebar, aside as, 7677
simulators, using with mobile devices, 347
SitePoint, 520
sites
HTML 5 Outliner, 52
loading, 528
planning, 26
sketching out, 26-27

small caps
removing, 271
using, 271
small element, 8, 132
Sneddon, Geoffrey, 52
Snook, Jonathan, 254
source code, saving, 40
source element
media attribute, 460
type attribute, 460
using with multiple media, 460
using with video element, 461-462
spacing
controlling, 264
fixing between lines, 123
span element
versus div element, 85
using, 134
spans, creating, 134-135
sxc attribute
audio, 471
contents, 15
video, 454, 460
Stack Overflow, Web resources, 520
stacking order, specifying, 315, 317
start tags, including in elements, 13
strikethrough, applying, 126
strong element, 110
versus b element, 110
versus i element, 110
versus mark, 117
nesting, 110
style element, @import rules in, 206
style rules
adding comments to, 182—-183
cascading, 185-187
constructing, 181
creating, 237
declaration blocks, 181
inheritance, 185-186
location of, 187
selectors, 181
specificity, 186—-187
style sheets. See also external style sheets
alternate, 210-211
@charset declaration, 199
CSS reset, 290

Index 545

style sheets (continued)
embedded, 202-203
external, 198-200
linking to, 201
media-specific, 208-209
naming, 199
organizing in folders, 370
persistent styles, 210
preferred styles, 210-211
rendering headings in, 7
styles. See also default styles; layout with
styles
applying to groups of elements, 236-237
location of, 206-207
styles-480.css, styles in, 333
sub element, 121-122
Sublime Text editor, 29
submit button
button element, 445
creating, 444—-445
with image, 444
labeling, 445
name/value pair, 445
subscripts, creating, 121-122
sup element, 121-122
superscripts, creating, 121-122
SVG (Scalable Vector Graphics)
coupling with video, 486
Web fonts, 354
syndicated content, management of, 57
syntax highlighting, using, 39, 506

T

Tab key, pressing, 170

table element, 489

tables
borders for data cells, 492
caption text, 490
cells, 490
colspan attribute, 494—-495
figcaption, 493
headers, 490
padding, 492
rows, 490
rowspan attribute, 494—-495
scope attribute, 490, 493
spanning columns and rows, 494—-495

structuring, 490—-493
tbody element, 491
td element, 490
tfoot element, 491
thead element, 491
tr element, 490
target attribute, 171
telephone boxes, creating, 432-433
terms, defining, 120
testing
browsers, 518
HTML pages, 516-517
local versions of sites, 517
testing techniques
enabling browser features, 509
file uploads, 508-509
saving files, 509
URL entry, 509
validating code, 508
text
adding drop shadows to, 382-383
aligning, 268-269
alternate, 157
decorating, 272-273
deleting, 124
emphasizing, 110
highlighting, 116-117
inserting, 124
marking important, 110
noting inaccuracies, 124-127
quoting, 113-115
removing decorations, 273
using preformatted, 130131
text areas
cols, 441
creating, 441
maximum characters, 441
maxlength, 441
rows, 441
text background, changing, 260-263
text boxes
autofocus attribute, 430
creating, 428-430
maxlength attribute, 430
name attribute, 428
placeholder attribute, 429-430
required attribute, 429

546 Index

text case, changing, 270
text content, 16—17. See also content
text editors

choosing encoding, 32

default extensions, 32

using, 28-29
text-decoration property, 272-273
TextMate editor, 29-30
text-only format

choosing, 32

saving Web pages in, 30
text-shadow property, 382-383
text-transform property, 270
TextWrangler

downloading, 28

using, 28
thumbnail images, linking, 177
time, specifying, 106—109
time element, 106—-107

restrictions, 109

using with pubdate, 109
title attribute

adding to elements, 95

versus title element, 95

using with abbr element, 118

using with dfn element, 120
title element, 4

best practices, 47

core message, 47

placement of, 46

restrictions, 47

special characters in, 47

versus title attribute, 95
titles

creating, 46-47

length of, 46

using as linked text, 46
tool tip labels, adding, 95
touchend JavaScript event, 504
touchmove JavaScript event, 504
touchstart JavaScript event, 504
troubleshooting

CSS, 512-513

enabling browser features, 509

file uploads, 508-509

HTML, 510-512

images, 519

resources, 520

saving files, 509

techniques, 520

URL entry, 509

validating code, 508
TrueDoc Web fonts, 354
tf (TrueType) Web fonts, 354, 359
Typekit service, 356-357, 359
typos, correcting, 510-511

U

u element, 136
Uggedal, Eivind, 350
ul (unordered list)
creating, 398-400
using with links, 65
Ullman, Larry, 422
Unicode, 16

uppercase value, using with text-transform,

270
URL boxes, creating, 432—-433

URLs (Uniform Resource Locators), 20-23

absolute versus relative, 21-23
creating, 175-177

file scheme, 20

http scheme, 20

lowercase letters, 170

mailto scheme, 20

scheme, 20

server name, 20

trailing forward slash, 20

using cite and blockquote with, 114

visiting, 528

user input instructions, marking up, 129

UTF-8 encoding
choosing, 32
saving files in, 45

'}

validating code, 514-515
var element, 129
vendor prefixes, 373-374
vertical-align property
baseline value, 322
bottom value, 322
middle value, 322
sub value, 322

Index 547

vertical-align property (continued)
super value, 322
text-bottom value, 322
text-top value, 322
top value, 322
video
adding to Web pages, 453
adding with Flash fallbacks, 463-466
autoplay attribute, 455-456
books, 487
controls attribute, 455-456
coupling with SVG (Scalable Vector
Graphics), 486
embedding YouTube, 484
hyperlink fallbacks, 461-462
looping, 457
multiple sources, 459
object element for Flash fallbacks, 463-466
online resources, 487
preload attribute, 454
preventing preloading, 458
specifying poster images, 457
using with canvas element, 485
video attributes
autoplay, 454-456
autoplay and loop, 457
controls, 454-456
height, 454
loop, 454
muted, 454
poster, 454
preload, 454
src, 454, 460
width, 454
video element, using with source element,
461-462
video file formats
converting between, 452
H.264, 452
MP4, 452
Ogg Theora, 452
WebM, 452-453, 455, 457
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
View Source command, using, 39

viewports
features of, 339
meta element, 339
visibility property, 324
collapse value, 326
hidden value, 326
visited links, 230
visitors, allowing to upload files, 442
Visscher, Sjoerd, 287
VoiceOver screen reader, 91
void elements, omitting end tags from, 511

w

WAI-ARIA. See ARIA (Accessible Rich Internet
Applications)
WAV audio file format, 468
wbr element, 137
Web design. See responsive Web design
Web Font Specimen, 357
Web fonts. See also fonts
bold formatting, 366—-369
browser support, 355
demo.html file, 358-359
downloading, 358-359
.eot (Embedded OpenType), 354
features of, 354
file types, 354
finding, 356-357
@font-face feature, 355
incorporating into Web pages, 361-362
italic formatting, 366369
legal issues, 355
managing file sizes, 365-369
quality, 357
rendering, 357
self-hosting, 356
services, 356-357, 370
styling, 365-369
subsetting, 365-366
.svg (Scalable Vector Graphics), 354
TrueDoc, 354
ttf (TrueType), 354, 359
using, 362-364
using for headlines, 369
woff (Web Open Font Format), 354

548 Index

Web host Web resources (continued)

connecting to domain, 524 Electric Mobile Simulator for Windows, 347
finding for sites, 523-524 event handlers, 504
Web Open Font Format (.woff), 354 Firebug for Firefox, 212
Web pages. See also default page; documents; Font Squirrel, 355-356, 358, 366
HTML pages Fontdeck service, 356
article versus section elements, 283 Fonts.com service, 356
background-related capabilities, 261 FontShop, 356
blog entries, 283 Fontspring, 361
comments, 282 forms, 428
components, 24 Google Apps, 518
containers, 279 Google Closure Compiler, 501
content, 24 Google WebFonts, 356
creating, 28-29 Graded Browser Support, 518
divs, 279 gradient backgrounds, 392
editing, 35 gradient generator, 393
family trees, 15 HandBrake, 452
file references, 1 hasLayout, 395
footer element, 279 HTML forms, 428
header element, 279 HTML Lint, 515
heading elements, 282 “HTML5 Canvas: The Basics,” 487
HTML, 2 HTML5 Video, 487
marking up, 283 HTML5’s new features, 448
markup, 1 iOS Simulator, 347
ordering content, 282 JavaScript events, 504
saving, 30-32 JavaScript libraries, 498
structure, 279-283 jQuery JavaScript library, 498
text content, 1, 16-17 JW Player, 463
viewing in browsers, 37-38 The League of Moveable Type, 355-356
Web resources “Learning SVG,” 487
320 and Up, 351 Meyer reset, 290
Apple’s Link Maker, 177 Miro Video Converter, 452
ARIA spec, 91 Mobile Boilerplate, 347, 350
BOM, 32 mobile devices, 351
browser compatibility, 375 “mobile first” design, 332
browser developer tools, 507 Modernizr, 287, 348, 377
Coda text editor, 29 MooTools JavaScript library, 498
collapse value for visibility, 326 multimedia, 487
ColorZilla’s gradient generator, 393 MyFonts, 356
conditional comments, 351 normalize css, 123
Creative Commons licenses, 152 “One Web” presentation, 332
CSS error checking, 515 PHP server-side language, 422
CSS Tricks, 395 polyfills, 377
CSS3 Generator, 374 ProtoFluid, 347
CSS3 selectors, 239 right-to-left languages, 141
developer tools, 507 showform.php script, 420

Index 549

Web resources (continued)
SitePoint, 520
Stack Overflow, 520
Sublime Text editor, 29
table structures, 489
text editors, 29
TextMate, 29
TextWrangler, 28
Typekit service, 356-357, 359
validating code, 515
video, 487
video converters, 452
“Video for Everybody,” 466
Video for Everybody Generator, 466
“Video on the Web,” 487
Web Font Specimen, 357
WebINK service, 356
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
Wufoo, 448
YouTube video, 484
YUl Compressor, 501
YUI JavaScript library, 498
Web sites
HTML 5 Outliner, 52
loading, 528
planning, 26
sketching out, 26-27
WebINK service, 356
-webkit- prefix, 373, 378-379

WebM videos

autoplay and loop, 457

autoplay attribute, 456

controls attribute, 455

described, 454

without controls, 453
WebVTT (Web Video Text Tracks), 467
“WebVTT and Video Subtitles,” 487
white space properties, setting, 266-267
width: property

auto property, 300

setting, 298-299
width video attribute, 454
woff (Web Open Font Format), 354
word processors, avoiding use of, 29
word spacing, setting, 264
Wroblewski, Luke, 332, 351

X
XHTML Strict document, DOCTYPE for, 45

Y

YouTube video, embedding, 484
YUI Compressor, 501

YUI JavaScript library, 498
YYYY-MM-DD format, 108

z
z-index property, 315, 317-319

550 Index

HTML Reference

On the following pages, you'll find a list

of the HTML elements and attributes
described in this book. Each element has
a short description and an annotated list of
its associated attributes.

HTML5 has introduced a number of new
elements and attributes, and it has also
redefined a few elements whose use

the W3C had discouraged in the previ-
ous (X)HTML specification. New elements
and attributes from HTML5 have been
marked in the Version column with a “5.”

Elements and attributes that have new or
additional meaning according to HTML5
have been marked with an asterisk (*).

The new features in HTML5 are unsup-
ported in some older browsers. For
additional information about what
browsers support which features, you
are encouraged to consult caniuse.com
and findmebyip.com/litmus. It’s also pos-
sible to use JavaScript to detect many of
these new features, using libraries such
as Modernizr (www.modernizr.com).

TABLE A.1 HTML Elements and Attributes

Element/Attribute(s) Description Version
--Most ELEMENTSs-- The following attributes may be used with most HTML elements
accesskey For adding a keyboard shortcut to an element
aria-* For associating accessibility attribute values specified by WAI-ARIA 5
class For identifying a set of elements in order to apply styles to them
contenteditable For making the content of an element editable 5
contextmenu For identifying a contextual menu for an element (the value must be the 5
same as a menu element’s id attribute)
data-* For storing custom data that is private to the page or application 5

table continues on next page

www.modernizr.com

TABLE A.1 continued

Element/Attribute(s) Description Version
dir For specifying the element’s text direction
draggable For making an element draggable 5
dropzone For identifying an element as a place where draggable elements can be 5
dropped
event For associating an element with a script (event is a placeholder for the
actual event name)
hidden For indicating that an element is not yet relevant or is no longer relevant 5
id For identifying a particular element so that it can be linked to, styled, or
scripted with JavaScript
lang For specifying the language an element is written in
role For providing additional information to assistive devices about the role of 5
an element as defined by WAI-ARIA
spellcheck For indicating whether the content of an element should have its spelling 5
and grammar checked
style For adding local style sheet information
tabindex For defining the order in which the Tab key takes the visitor through
elements
title For labeling elements with tool tips
a For creating links and anchors
href For specifying the URL of a page or the name of an anchor that a link
goes to
hreflang For specifying the language of the linked resource 5
media For describing the media for which the target document was defined 5
rel For identifying the nature of the link
target For specifying the window or iframe where a link should open *
type For noting a resource’s MIME type
abbr For explaining the meaning of abbreviations and acronyms *
address For identifying contact information for the nearest article or body
element ancestor
area For specifying the coordinates of image maps
accesskey For adding a keyboard shortcut to a particular region of the map
alt For giving information about an area
coords For giving the coordinates of an area in an image map
href For specifying the destination URL of a link in an area of an image map
hreflang For specifying the language of the linked resource 5

table continues on next page

A2 Appendix A

TABLE A.1 continued

Element/Attribute(s) Description Version
media For describing the media for which the target document was defined 5
rel For identifying the kind of link
shape For specifying the shape of an area in an image map
target For specifying the window or iframe where a link should open *

article For identifying a self-contained composition in a page that is in principle 5

independently distributable or reusable

aside For identifying a section of a page that consists of content that is 5

tangentially related to the content around it

audio For embedding sound or audio in a page 5
autoplay For telling the browser to start playing the audio file as soon as it can 5
controls For telling the browser to provide controls for the audio element 5
crossorigin For setting cross-origin request credentials 5
loop For telling the audio file to start over without interruption upon reaching 5

its end
mediagroup For associating multiple media files together 5
muted For controlling the default state of audio output 5
preload For specifying whether the browser can begin downloading the audio 5
file before the visitor starts playing it
src For identifying the URL of the audio file to play 5
b For identifying a span of text to which attention is being drawn for *
utilitarian purposes, without conveying any extra importance and with no
implication of an alternate voice or mood

base For specifying the base URL of the page
href For specifying the URL to be used to generate relative URLs
target For specifying the default target for the links on the page *

bdi For identifying a span of text that is to be isolated from its surroundings 5

for the purposes of bidirectional text formatting
dir For specifying text direction 5
bdo For explicitly formatting the text direction of its content
dir For specifying text direction

blockquote For identifying a section quoted from another source
cite For giving the URL of the source

body For enclosing the main content area of a page

br For creating a line break

table continues on next page

HTML Reference A3

TABLE A.1 continued

Element/Attribute(s) Description Version
button For creating buttons
autofocus For specifying that the button is to be focused as soon as the page is 5
loaded
disabled For indicating that the element is not available in the current state
form For associating the element with a form that it is not a part of 5
formaction For overriding the form’s action attribute 5
formenctype For overriding the form’s enctype attribute 5
formmethod For overriding the form’s method attribute 5
formnovalidate For overriding the form’s novalidate attribute 5
formtarget For overriding the form’s target attribute 5
name For identifying the data sent with a button, or for identifying the button
itself (perhaps for a JavaScript function)
type For using the button in a form element
value For specifying the data that should be submitted when the button is
clicked
canvas To provide scripts with a resolution-dependent bitmap canvas for 5
rendering graphics on the fly
width, height For specifying the size of the canvas 5
caption For creating a caption for a table
cite For marking text as a citation
code For marking text as computer code
col For joining columns in a table into a non-structural group
span For specifying the number of columns in a column group
colgroup For joining columns in a table into a structural column group
span For specifying the number of columns in a column group
command For representing a command the user can invoke, such as defining a 5
keyboard command
checked For indicating the checked state of the command (if the command type is 5
“checkbox” or “radio”)
disabled For indicating that the command is not available in the current state 5
icon For providing an image that represents the command 5
label For showing the name of the command to the user 5
radiogroup For identifying the radio buttons that will be toggled when the command 5
is toggled (if the command type is “radio”)
type For indicating the type of command 5

table continues on next page

A4 Appendix A

TABLE A.1 continued

Element/Attribute(s) Description Version
datalist To contain a group of option elements that represent a predefined set of 5
options for another form control
dd For marking a definition in a list
details For creating a disclosure widget from which the visitor can obtain 5
additional information or controls
open For specifying whether the element is open or closed by default 5
del To mark deleted text
cite For referencing a URL that explains the change
datetime For specifying the time and date of the change
dfn For specifying the defining instance of a term
title For providing the definition of the term
div For dividing a page into block-level sections
di For creating a definition list
dt For marking a term to be defined in a list
em To mark text that has stress emphasis *
embed For adding multimedia *
src For specifying the URL of a multimedia file
type For identifying the MIME type of the multimedia file
width, height For specifying the size of the embedded multimedia player
fieldset For grouping a set of form elements together
disabled For disabling all form controls within the fieldset 5
form For associating the element with a form that it is not a part of 5
name For providing the fieldset with a name for use later 5
figcaption For identifying a caption or legend for the contents of its parent figure 5
element
figure For identifying content that is referenced within the main flow of the 5
document but that could be moved elsewhere without affecting the flow
of the document
footer For identifying a footer for the nearest ancestor body, section, article, 5
or aside element
form For designating a form to collect data for submission

accept-charset

For identifying the character encoding to be used with the form
submission (defaults to the page’s character set)

action

For giving the URL of the script that will process the form data

table continues on next page

HTML Reference AS5

TABLE A.1 continued

Element/Attribute(s) Description Version
autocomplete For preventing the browser from providing/remembering autocompletion 5
values when the attribute is set to “off” (the default is “on”; that is,
autocompletion is allowed by default)
enctype For making sure files are sent to the server in the proper format
method For specifying how data should be sent to the server
name For providing the form with a name for use later
novalidate For allowing the form to be submitted without validation 5
target For identifying the target window or iframe of the form’s submission *
h1, h2, h3, h4, h5,h6 For creating headings
head For creating the head section, which contains information about the
page, including the title, author, keywords, style sheets, and scripts
header For identifying a group of introductory content or navigational aids 5
hgroup For identifying the heading of a section when a heading has multiple 5
levels
hr For identifying a paragraph-level thematic break *
html For identifying a text document as an HTML document
manifest For specifying an application cache manifest that is used when the page 5
is offline
i For marking a span of text that is in an alternate voice or mood or that is *
otherwise offset from the normal prose in a manner indicating a different
quality of text
iframe For creating a nested browsing context *
name For specifying the name of the iframe, to be used as a target
sandbox For specifying additional restrictions on the content of the iframe, for 5
security purposes
seamless For specifying whether the iframe should appear to be part of the 5
containing page
src For specifying the URL of the initial page
srcdoc For specifying the URL of the initial page 5

width, height

For specifying the size of the iframe

img For inserting images on a page
alt For offering alternate text that is displayed if the image is not and that is
for users of assistive devices
crossorigin For allowing images from third-party sites (that allow cross-origin access)
to be used with the canvas element
ismap For indicating that the element provides access to a server-side image

map (the element must be a descendant of an a element)

table continues on next page

A6 Appendix A

TABLE A.1 continued

allowed when the input type is “hidden,” “image,” or some button types)

Element/Attribute(s) Description Version

src For specifying the URL of an image

usemap For specifying the client-side image map that should be used with the
referenced image

width, height For specifying the size of an image so that the page is loaded more
quickly, or for scaling

input For creating form elements

accept For informing the browser what file types will be accepted if the input
type is “file”

alt For providing a textual alternate if the input type is “image”

autocomplete For preventing the browser from providing/remembering autocompletion 5
values when the attribute is set to “off” (the default is “on”; that is,
autocompletion is allowed by default)

autofocus For specifying that the input is to be focused as soon as the page is 5
loaded

checked For marking a radio button or checkbox by default

dirname For identifying the direction of the entered text 5

disabled For indicating that the input is not available in the current state

form For associating the element with a form that it is not a part of 5

formaction For overriding the form’s action attribute 5

formenctype For overriding the form’s enctype attribute 5

formmethod For overriding the form’s method attribute 5

formnovalidate For overriding the form’s novalidate attribute 5

formtarget For overriding the form’s target attribute 5

list For associating the input with a datalist 5

max, min For indicating the input element’s allowed range of values 5

maxlength For specifying the maximum number of characters that can be entered in
an input element

multiple For specifying whether the user can be allowed to enter more than one 5
value

name For identifying data collected by an element

pattern For providing a regular expression against which the input element’s 5
value is checked

placeholder For providing a hint to aid in data entry 5

readonly For keeping visitors from changing certain form elements

required For identifying that the element must not be blank to submit the form (not 5

table continues on next page

HTML Reference A7

TABLE A.1 continued

Element/Attribute(s) Description Version
size For specifying the length of a text or password box
srC For specifying the URL of an active image
step For controlling the granularity and specificity of allowed values 5
type For specifying if a form element is a text box, password box, radio *

button, checkbox, hidden field, submit button, reset button, active image,
date/time box, number box, or color box; for selecting from a range of
values; or for entering a telephone number, email address, or set of
search terms

value For specifying the default data in a form element
width, height For specifying the dimensions of the input (only allowed when the input *
type is “image”)
ins For marking an addition to the document
cite For referencing a URL that explains the change
datetime For specifying the time and date of the change
kbd For marking user input
keygen For generating a public and private key pair 5
autofocus For specifying that the keygen element is to be focused as soon as the 5
page is loaded
challenge For generating a challenge to go along with the key pair 5
disabled For indicating that the element is not available in the current state 5
form For associating the element with a form that it is not a part of 5
keytype For identifying the kind of key pair to be generated 5
name For identifying the data that is gathered 5
label For labeling form elements
for For specifying which form element the label belongs to
form For associating the element with a form that it is not a part of 5
legend For labeling fieldsets
li For creating a list item
value For determining the initial value of the list item (if it is the child of an ol) *
link For linking to an external style sheet or other external resource
href For specifying the URL of the resource
hreflang For specifying the language of the linked resource 5
media For defining a style sheet’s targeted media types and/or media features
rel For identifying the kind of link

table continues on next page

A8 Appendix A

TABLE A.1 continued

Element/Attribute(s) Description Version
sizes For identifying the size of the referenced icon (for use only when the rel 5
attribute is “icon”)
title For labeling an alternate style sheet or other resource
type For noting a resource’s MIME type (only required if the link type is not
“text/css”)
map For creating a client-side image map
name For naming a map so it can be referenced later
mark For highlighting text for reference purposes due to its relevance in 5
another context
math For embedding MathML in the page 5
menu For containing a list of commands *
label For labeling the menu 5
type For identifying the kind of menu being used: “context,” “list” (default), or 5
“toolbar”
meta For associating various kinds of metadata with the page
charset For identifying the character encoding of the page itself 5
content For adding extra information about the page itself
http-equiv For creating automatic jumps to other pages, setting the default scripting
language, and declaring the character encoding
name For identifying extra information about the page
meter For representing a measurement within a known range 5
high, low For specifying a range of values as being “high” or “low” 5
max, min For identifying the maximum and minimum allowable values 5
name For identifying the data that is gathered 5
optimum For identifying the optimum value 5
value For indicating the current value of the meter (required) 5
nav For identifying a section of a page that links to other pages or to parts 5
within the page
noscript For providing alternatives to scripts
object For embedding objects in Web pages
data For identifying the source of the multimedia file to be embedded
form For associating the element with a form that it is not a part of 5
name For identifying the object (e.g., so it can be scripted)
type For noting the object’s MIME type

table continues on next page

HTML Reference A9

TABLE A.1 continued

Element/Attribute(s) Description Version

typemustmatch For indicating that the resource specified in the object’s data attribute

must have the same MIME type as identified in the object’s type attribute

(allowed only if the object’s data and type are both specified)

usemap

For indicating whether the object has an associated image map

width, height

For specifying the dimensions of the object’s box

ol For creating ordered lists
reversed For specifying whether the list is descending (..., 3, 2, 1)
start For specifying the initial value of the first list item
type For specifying the kind of numerals that should begin each list item
optgroup For grouping a set of option elements under a common label within a
select element
disabled For indicating that the element is not available in the current state
label For labeling the group of options
option For creating the individual options in a select or datalist element
disabled For indicating that the element is not available in the current state
label For specifying how the option should appear in the menu
selected For making a menu option be selected by default in a blank form
value For specifying the initial value of a menu option
output For representing the result of a calculation
for For creating an explicit association between the result of a calculation
and the values that went into the calculation
form For associating the element with a form that it is not a part of
name For identifying the data that is gathered
p For creating a paragraph
param For setting properties of an object
name For identifying the kind of property
value For setting the value of the named property
pre For representing a block of preformatted text
progress For identifying the completion progress of a task
max Must be a valid floating-point number greater than zero (if present)
value Must be a valid floating-point number equal to or greater than zero (and
less than or equal to the value of the max attribute, if it is present)
q For quoting short passages from another source
cite For giving the URL of the source of the quote

table continues on next page

A10 Appendix A

TABLE A.1 continued

Element/Attribute(s) Description Version
p For providing parentheses around a ruby text component of a ruby 5
annotation in browsers that don’t support ruby annotations
rt For marking the ruby text component of a ruby text annotation 5
ruby For allowing text to be marked up with ruby annotations
s For identifying text that is no longer accurate or no longer relevant *
samp For representing sample output from a program or computing system
script For adding “automatic” scripts to a page
async For influencing script loading and execution 5
charset For specifying the character set an external script is written in
defer For influencing script loading and execution
src For referencing an external script
type For specifying the scripting language the script is written in (only *
required if the script type is not “text/javascript”)
section For identifying a section of a document 5
select For creating form control for selecting from a set of options
autofocus For specifying that the select element is to be focused as soon as the 5
page is loaded
disabled For indicating that the element is not available in the current state
form For associating the element with a form that it is not a part of 5
multiple For allowing users to choose more than one option in the menu
name For identifying the data collected by the menu
required For identifying that the user must select one of the options in order to 5
submit the form (the first child option element must be a placeholder or
an empty value)
size For specifying the number of items initially visible in the menu (and for
displaying the menu as a list)
small For representing side comments such as small print *
source For identifying multiple alternative media resources within an audio or 5
video element
crossorigin For setting cross-origin request credentials 5
media For identifying the intended media type of the resource 5
src For identifying the URL of the audio or video file to play 5
type For noting a resource’s MIME type 5
span For wrapping content in an element that has no intrinsic semantic *
meaning
strong For indicating strong importance of the element’s content *

table continues on next page

HTML Reference A11

TABLE A.1 continued

Element/Attribute(s) Description Version
style For embedding style information in a page
media For indicating a style sheet’s purpose
scoped For applying styles only to the descendants of the element’s parent 5
type For indicating a style sheet’s MIME type (only required if the style type is *
not “text/css”)
sub For creating subscripts
summary For identifying a summary, caption, or legend for the contents of its 5
parent details element
sup For creating superscripts
svg For embedding Scalable Vector Graphics in the page 5
table For creating tables
tbody For identifying the body of the table; in contrast with the header (thead)
or footer (tfoot)
td, th For creating regular and header cells, respectively, in a table
colspan For spanning a cell across more than one column
rowspan For spanning a cell across more than one row
scope For identifying to which rows, columns, rowgroups, or columngroups a
th applies
textarea For creating text block entry areas in a form
autofocus For specifying that the text area is to be focused as soon as the page is 5
loaded
dirname For identifying the direction of the entered text 5
disabled For indicating that the element is not available in the current state
form For associating the element with a form that it is not a part of 5
maxlength For specifying the maximum number of characters that can be entered in
a textarea
name For identifying the data that is gathered with the text block
placeholder For providing a hint to aid in data entry 5
readonly For protecting a text area’s contents
required For indicating that the element must not be blank in order to submit the 5
form
rows, cols For specifying the number of rows and columns in the text block
wrap For specifying the use of soft or hard wraps when content of field is 5
submitted
tfoot, thead For identifying the footer and header area of a table

table continues on next page

A12 Appendix A

TABLE A.1 continued

Element/Attribute(s) Description Version
time For specifying a date, a time, or both 5
datetime For providing a machine-readable version of the time or date expressed 5
in the element’s text
pubdate For specifying the publication date and time of the element’s ancestor 5
article or body element
title For creating the title of the page (required)
tr For creating rows in a table
track For specifying external timed text tracks for the parent audio or video 5
element
default For indicating which track is the default 5
kind For identifying whether the track is “subtitles,” “captions,” “descriptions,” 5
“chapters,” or “metadata”
label For providing a user-readable name for the track 5
src For identifying the URL of the track’s data 5
srclang For identifying the language of the track’s data 5
u For displaying a span of text with an unarticulated, though explicitly *
rendered, non-textual annotation
ul For creating unordered lists
var For marking text as a variable name
video For embedding videos, movies, and captioned audio files 5
autoplay For telling the browser to start playing the video file as soon as it can 5
controls For telling the browser to provide controls for the video element 5
crossorigin For setting cross-origin request credentials 5
loop For telling the video file to start over without interruption upon reaching 5
its end
mediagroup For associating multiple media files together 5
muted For controlling the default state of audio output 5
poster For specifying the URL of an image to use as a placeholder while media 5
loads, or in case of an error loading
preload For specifying whether the browser can begin downloading the media 5
file before the visitor starts playing it
src For identifying the URL of the video file to play 5
width, height For specifying the dimensions of the video 5
wbr For identifying an appropriate place to insert a line-break into a word 5

without hyphenation

HTML Reference A13

CSS Properties
and Values

This book does not cover every single
property defined in the Cascading Style
Sheet specifications. Instead, | focus on
those properties that are supported by at
least one browser.

Table B is designed as a quick reference
to many common or useful CSS proper-
ties and their allowed values. | have also
indicated each property’s default or initial
value, the elements to which it may be
applied, whether or not the property is
inherited, and what percentages refer to if
they may be used. Table B.1is derived from
the complete specifications at www.w3.org/
TR/CSS21/propidx.html and is copyright

© World Wide Web Consortium (Massa-
chusetts Institute of Technology, Institut
National de Recherche en Informatique et
en Automatique, Keio University). All Rights
Reserved.

Many of the properties accept a length,
percentage, or color for values.

Table B.2 is a reference to CSS selectors
and combinators that identifies items
introduced in CSS3. Table B.2 is derived
from the CSS3 selector module at
www.w3.0rg/TR/css3-selectors/ and is
copyright © World Wide Web Consortium
(Massachusetts Institute of Technology,
Institut National de Recherche en Informa-
tique et en Automatique, Keio University).
All Rights Reserved.

Table B.3 covers color values introduced in
CSS3: HSL, HSLA, and RGBA.

Table B.4 shows the syntax for defining
gradients in CSS.

Table B.5 addresses the syntax for media
queries, which can be used to target styles
at specific media types (such as screen or
print) as well as for detecting other media
features (dimensions, device orientation,
and so on).

Table B.6 presents the syntax for embed-
ding fonts by using the @font-face rule.

www.w3.org/TR/css3-selectors/
www.w3.org/TR/CSS21/propidx.html
www.w3.org/TR/CSS21/propidx.html

For more information about font embed-
ding, please see Chapter 13. For an
example of “bulletproof” @font-face syn-
tax, please see www.fontspring.com/blog/
fixing-ie9-font-face-problems.

CSS3 is an evolving specification, and
browsers continue to update with addi-
tional support for various modules within
the specification. Browser makers also
introduce new features of their own or
implement CSS3 features that are only
proposed standards. Fortunately, CSS
provides for a safe way to do this: vendor
prefixes. This allows different browsers to
support experimental implementations in
a way that does not interfere with other
browsers’ implementations and does not
override whatever becomes the standard-
ized version of the property (for example,
using -webkit-box-shadow instead of
box-shadow).

CSS Properties and Values

The vendor prefixes you are most likely to
come across are:

-moz- (Firefox and other browsers that use
Mozilla’s rendering engine)

-webkit- (Chrome, Safari, and other
browsers that use the WebKit rendering
engine)

-0- (Opera)
-ms- (Internet Explorer 8 and later)

For more information about what browsers
support which CSS3 properties and values,
please consult www.quirksmode.org/css/
contents.html, http://caniuse.com, and
http:/findmebyip.com/litmus. In addition,
you can test the browser support of many
of these features by using such JavaScript
libraries as Modernizr (www.modernizr.com).

| hope you will find this information useful.

TABLE B.1 CSS Properties and Values

Property/Values

background

any combination of the values

for background-attachment,
background-color, background-image,
background-repeat, and/or
background-position, or inherit

background-attachment
either scroll, fixed, or inherit

background-color
either a color, transparent, or inherit

Description and Notes

For changing the background color and image of elements.

initial value depends on individual properties; not inherited;
percentages allowed for background-position

To display multiple background images, separate the
combined background values with a comma; if you are
specifying a background-color, this should be included as
a part of the last background.

For determining if and how background images should scroll.
initial value: scroll; not inherited

If you are displaying multiple background images, you can
apply a separate background-attachment value to each by
separating the values with commas.

For setting just the background color of an element.
initial value: transparent; not inherited

table continues on next page

B2 Appendix B

www.fontspring.com/blog/fixing-ie9-font-face-problems
www.fontspring.com/blog/fixing-ie9-font-face-problems
www.quirksmode.org/css/contents.html
www.quirksmode.org/css/contents.html
http://caniuse.com
http://findmebyip.com/litmus
www.modernizr.com

TABLE B.1 continued
Property/Values

background-image

either a URL, a CSS gradient (see Table B.4),

none, or inherit

background-position
either one or two percentages or lengths

(or one percentage and one length) or one

of top, center, or bottom and/or one of
left, center, or right, or use inherit

background-repeat

one of repeat, repeat-x, repeat-y,
no-repeat, or inherit

background-size

either one or two percentages or lengths,
or auto, or use cover or contain

border

any combination of the values of
border-width, border-style, and/or a
color, or inherit

border-color
from one to four colors, transparent, or
inherit

border-radius

border-top-right-radius,
border-bottom-right-radius,
border-bottom-left-radius,
border-top-left-radius

Description and Notes

For setting just the background image of an element.

initial value: none; not inherited

To display multiple background images, separate the image
values with a comma.

For setting the physical position of a specified background
image.

initial value: 0% 0%; if a single percentage is set, it is used for
the horizontal position, and the initial value of the vertical is
set to 50%; if only one keyword is used, the initial value of the
other is center; applies to block-level and replaced elements;
not inherited; percentages refer to the size of the box itself

If you are displaying multiple background images, you can
apply a separate background-position value to each by
separating the values with commas.

For determining how and if background images should be
tiled.

initial value: repeat; not inherited

If you are displaying multiple background images, you can
apply a separate background-repeat value to each by
separating the values with commas.

For specifying the size of background images.

initial value: auto; not inherited

If you are displaying multiple background images, you

can apply a separate background-size value to each by
separating the values with commas.

For defining all aspects of a border on all sides of an element.
initial value depends on individual properties; not inherited

For setting only the color of the border on one or more sides
of an element.

initial value: the element’s color property; not inherited

For giving a box rounded corners.

initial value: 0; not inherited

For setting the border-radius values for only one corner of
the box.

initial value: 0; not inherited

Note: older versions of Firefox use a different syntax
for individual corners: -moz-border-radius-topright,
-moz-border-radius-bottomright,
-moz-border-radius-bottomleft, and
-moz-border-radius-topleft.

table continues on next page

CSS Properties and Values B3

TABLE B.1 continued
Property/Values

border-spacing
either one or two lengths or inherit

border-style

one to four of the following values: none,
dotted, dashed, solid, double, groove,
ridge, inset, outset, inherit

border-top, border-right, border-bottom,
border-left

any combination of a single value each
for border-width, border-style, and/or a
color, or use inherit

border-top-color, border-right-color,
border-bottom-color, border-left-color
one color or inherit

border-top-style, border-right-style,
border-bottom-style, border-left-style

one of none, dotted, dashed, solid
double, groove, ridge, inset, outset, or
inherit

border-top-width, border-right-width,
border-bottom-width, border-left-width
one of thin, medium, thick, or a length
border-width

one to four of the following values: thin,
medium, thick, or a length

bottom

either a percentage, length, auto, or
inherit

box-shadow

optional inset followed by two to four
length values, followed by a color

clear
one of none, left, right, both, or inherit

Description and Notes

For specifying the amount of space between borders in a
table.

initial value: 0; may be applied only to table elements;
inherited

For setting only the style of a border on one or more sides of
an element.

initial value: none; not inherited

For defining all three border properties at once on only one
side of an element.

initial value depends on individual values; not inherited

For defining just the border’s color on only one side of an
element.

initial value: the value of the colox property; not inherited
For defining just the border’s style on only one side of an
element.

initial value: none; not inherited

For defining just the border’s width on only one side of an
element.

initial value: medium; not inherited

For defining the border’s width on one or more sides of an
element.

initial value: medium; not inherited

For setting the distance that an element should be offset from
its parent element’s bottom edge.

initial value: auto; not inherited; percentages refer to height of
containing block

For adding one or more drop shadows to a box. The length
values refer (in order) to: position to the right of the box
(negative values position to the left), position down from the
box (negative values position up), blur radius (negative values
are not allowed), and spread distance (negative values cause
the shadow to contract). Each subsequent box-shadow value
should be separated from its predecessor with a comma.

initial value: none; inherited
For preventing elements from wrapping around on one or

both sides of floated elements.

initial value: none; may only be applied to block-level
elements; not inherited

table continues on next page

B4 Appendix B

TABLE B.1 continued

Property/Values
clip
one of auto, rect, or inherit

color
a color or inherit

cursor

one of auto, crosshair, default, pointer,
progress, move, e-resize, ne-resize
nw-resize, n-resize, se-resize,
sw-resize, s-resize, w-resize, text, wait
help, a URL, or inherit

display

one of inline, block, inline-block
list-item, run-in, compact, table
inline-table, table-row-group, table-
header-group, table-footer-group,
table-row, table-column-group, table-
column, table-cell, table-caption, ruby,
ruby-base, ruby-text, ruby-base-group
ruby-text-group, none, inherit

float
one of 1left, right, none, inherit

font

if desired, any combination of the values
for font-style, font-variant, and
font-weight followed by the required
font-size, an optional value for
line-height, and the also-required font-
family, or use inherit

font-family

one or more quotation mark-enclosed font
names followed by an optional generic font
name, or use inherit

font-size

an absolute size, a relative size, a length, a
percentage, or inherit

font-style
either normal, italic, oblique, or inherit

font-variant

either normal, small-caps, or inherit

Description and Notes

For displaying only a portion of an element.

initial value: auto; applies only to absolutely positioned
elements

For setting the text color of an element.

initial value: parent’s color, some colors are set by browser;
inherited

For setting the cursor’s shape.

initial value: auto; inherited

For determining how and if an element should be displayed.
initial value: usually inline or block; not inherited

For determining which side of the parent element an element
will float to.

initial value: none; may not be applied to positioned elements
or generated content; not inherited

For setting at least the font family and size, and optionally the
style, variant, weight, and line height of text.

initial value depends on individual properties; inherited;
percentages allowed for values of font-size and line-
height; font-size and font-family are required for the font
property to work

For choosing the font family for text.
initial value: depends on browser; inherited

For setting the size of text.

initial value: medium; the computed value is inherited;
percentages refer to parent element’s font size

For making text italic.
initial value: normal; inherited

For setting text in small caps.
initial value: normal; inherited

table continues on next page

CSS Properties and Values BS5

TABLE B.1 continued

Property/Values

font-weight

either normal, bold, bolder, lighter, 100,
200, 300, 400, 500, 600, 700, 800, 900, Or
inherit

height

either a length, a percentage, auto, or
inherit

left

either a length, a percentage, auto, or
inherit

letter-spacing

either normal, a length, or inherit
line-height

either normal, a number, a length, a
percentage, or inherit

list-style

any combination of the values for
list-style-type, list-style-position
and/or list-style-image, or use inherit
list-style-image

either a URL, none, or inherit

list-style-position

either inside, outside, or inherit

list-style-type

either disc, circle, square, decimal,
lower-roman, upper-roman, lower-alpha,
upper-alpha, none, or inherit

margin

one to four of the following: 1ength,
percentage, or auto, or inherit

margin-top, margin-right,
margin-bottom, margin-left

either a length, a percentage, auto, or
inherit

Description and Notes

For applying, removing, and adjusting bold formatting.
initial value: normal; the numeric values are considered
keywords and not integers (you can’t choose 150, for
example); inherited

For setting the height of an element.

initial value: auto; may be applied to all elements except non-
replaced inline elements, table columns, and column groups;
not inherited

For setting the distance that an element should be offset from
its parent element’s left edge.

initial value: auto; may only be applied to positioned
elements; not inherited; percentages refer to width of
containing block

For setting the amount of space between letters.

initial value: normal; inherited

For setting the amount of space between lines of text.

initial value: normal; inherited; percentages refer to the font
size of the element itself

For setting a list’s marker (regular or custom) and its position.

initial value depends on initial values of individual elements;
may only be applied to list elements; inherited

For designating a custom marker for a list.

initial value: none; may only be applied to list elements;
overrides list-style-type; inherited

For determining the position of a list's marker.

initial value: outside; may only be applied to list elements;
inherited

For setting a list’s marker.

initial value: disc; may only be applied to list elements; not
used if 1ist-style-type is valid; inherited

For setting the amount of space between one or more sides
of an element’s border and its parent and/or sibling elements.

initial value depends on browser and on value of width; not
inherited; percentages refer to width of containing block

For setting the amount of space between only one side of an
element’s border and its parent and/or sibling elements.

initial value: 0; not inherited; percentages refer to width
of containing block; the values for margin-right and
margin-left may be overridden if sum of width, margin-
right, and margin-left are larger than parent element’s
containing block

table continues on next page

B6 Appendix B

TABLE B.1 continued
Property/Values

max-height, max-width

either a length, a percentage, none, or
inherit

min-height, min-width
either a length, a percentage, or inherit

opacity
any decimal value from 0.0 (fully
transparent) to 1.0 (fully opaque)

orphans
either an integer or inherit

overflow

either visible, hidden, scroll, auto, or
inherit

padding

one to four lengths or percentages, or
inherit

padding-top, padding-right,
padding-bottom, padding-left

either a length, a percentage, or inherit

page-break-after, page-break-before

either always, avoid, auto, right, left, or

inherit
page-break-inside
either avoid, auto, or inherit

position

either static, relative, absolute, fixed,
or inherit

right
either a length, a percentage, auto, or
inherit

Description and Notes
For setting the maximum height and/or width of an element,
respectively.

initial value: none; may not be applied to inline elements or
table elements; not inherited; percentages refer to height/
width of containing block

For setting the minimum height and/or width of an element,
respectively.

initial value: 0; may not be applied to inline elements or table
elements; not inherited; percentages refer to height/width of
containing block

For making an element translucent or invisible.

initial value: 1; not inherited

For specifying how many lines of an element may appear
alone at the bottom of a page.

initial value: 2; may only be applied to block-level elements;
inherited; only for use with print media

For determining where extra content should go if it does not
fit in the element’s content area.

initial value: visible; may only be applied to block-level and
replaced elements; not inherited

For specifying the distance between one or more sides of an
element’s content area and its border.

initial value depends on browser; not inherited; percentages
refer to width of containing block

For specifying the distance between one side of an element’s
content area and its border.

initial value: 0; not inherited; percentages refer to width of
containing block

For specifying when page breaks should or should not occur.
initial value: auto; may only be applied to block-level
elements; not inherited; only for use with print media

For keeping page breaks from dividing an element across
pages.

initial value: auto; may only be applied to block-level
elements; inherited; only for use with print media

For determining how an element should be positioned with
respect to the document’s flow.

initial value: static; not inherited

For setting the distance that an element should be offset from
its parent element’s right edge.

initial value: auto; may only be applied to positioned
elements; not inherited; percentages refer to width of
containing block

table continues on next page

CSS Properties and Values B7

TABLE B.1 continued

Property/Values
table-layout
one of fixed, auto, or inherit

text-align

one of left, right, center, justify, a
string, or inherit

text-decoration

any combination of underline, overline,
line-through, and blink, or none or
inherit

text-indent

either a length, a percentage, or inherit

text-overflow

one of clip, ellipsis, or "string"

text-shadow

two to four length values, followed by a
color

text-transform

either capitalize, uppercase, lowercase,
none, or inherit

transform

none or a list of transform functions (matrix,

translate, translateX, translatey,

scale, scaleX, scaleY, rotate, skew, skewX,

skewY)

transform-origin

either one or two percentages or lengths

(or one percentage and one length) or one

of top, center, or bottom and/or one of
left, center, or right

transition

a space-separated shorthand for defining (in
order) transition-property, transition-

duration, transition-timing-function,
and transition-delay

Description and Notes

For choosing the algorithm that should be used to determine
the widths of cells.

initial value: auto; not inherited

For aligning text.

initial value depends on browser and writing direction; may
only be applied to block-level elements; inherited

For decorating text (mostly with lines).

initial value: none; not inherited

For setting the amount of space the first line of a paragraph
should be indented.

initial value: 0; may only be applied to block-level elements;
inherited; percentages refer to width of containing block

For specifying how text overflow must be handled when it is
not visible.

initial value: clip

For adding one or more drop shadows to the text of an
element. The length values refer (in order) to: position to

the right of the text (negative values position to the left),
position down from the box (negative values position up),

blur radius (negative values are not allowed), and spread
distance (negative values cause the shadow to contract). Each
subsequent text-shadow value should be separated from its
predecessor with a comma.

initial value: none; inherited

For setting the capitalization of an element’s text.
initial value: none; inherited

For transforming the shape, size, or orientation of an element.

initial value: none; not inherited; transform functions are
applied in the same order they are listed

For defining the origin of any transforms applied to an
element.

initial value: 50% 50%; not inherited; only applies to block-level
and inline-level elements; percentages refer to the size of the
element’s box

For defining a transition effect on an element.

initial value depends on the individual property; applies to
all elements, including the :before and :after pseudo-
elements; the order of the values is important to this property

table continues on next page

B8 Appendix B

TABLE B.1 continued
Property/Values

transition-property

none, all, or a comma-separated list of CSS
properties

transition-duration

a time value in seconds or milliseconds

transition-timing-function

ease, linear, ease-in, ease-out
ease-in-out, cubic-bezier(number,
number, number, number)
transition-delay

a time value in seconds or milliseconds

top

either a length, a percentage, auto, or
inherit

vertical-align

either baseline, sub, super, top,
text-top, middle, bottom, text-bottom, a
percentage, a length, or inherit
visibility

either visible, hidden, collapse, or
inherit

white-space

either normal, pre, nowrap, pre-wrap, pre-
lined, or inherit

widows

either an integer or inherit

width

either a length, a percentage, auto, or
inherit

word-spacing
either normal, a length, or inherit
z-index

either auto, an integer, or inherit

Description and Notes

For identifying the CSS properties defined on an element that
should have a transition applied to it.

initial value: all; not inherited; applies to all elements,
including the :before and :after pseudo-elements

For defining the time that a transition takes to complete.

initial value: 0s (zero seconds); not inherited; applies to all
elements including the :before and :after pseudo-elements
For describing how the intermediate values used during a
transition are to be calculated.

initial value: ease; applies to all elements, including the
:before and :after pseudo-elements

For defining when a transition will start.

initial value: 0s (zero seconds); not inherited; applies to all
elements, including the :before and :after pseudo-elements
For setting the distance that an element should be offset from
its parent element’s top edge.

initial value: auto; may only be applied to positioned
elements; not inherited; percentages refer to height of
containing block

For aligning elements vertically.

initial value: baseline; may only be applied to inline-level and
table cell elements; not inherited; percentages refer to the
element’s 1ine-height property

For hiding elements without taking them out of the
document’s flow.

initial value: inherit, which rather makes the fact that it's not
inherited a moot point

For specifying how white space should be treated.

initial value: normal; may only be applied to block-level
elements; inherited

For specifying how many lines of an element may appear
alone at the top of a page.

initial value: 2; may only be applied to block-level elements;
inherited; only for use with print media

For setting the width of an element.

initial value: auto; may not be applied to inline elements, table
rows, or row groups; not inherited; percentages refer to width
of containing block

For setting the distance between words.

initial value: normal; inherited

For setting the depth of an element with respect to
overlapping elements.

initial value: auto; may only be applied to positioned
elements; not inherited

CSS Properties and Values B9

CSS Selectors

TABLE B.2 CSS Selectors

Pattern

*

E

E[foo]
E[foo="bar"]
E[foo~="bar"]

E[foo”="bar"]

E[foo$="bar"]

E[foo*="bar"]

E[foo|="en"]
E:root
E:nth-child(n)

m

:nth-last-child(n)

m

:nth-of-type(n)

m

:nth-last-of-type(n)

m

:first-child

m

:last-child

m

:first-of-type

m

:last-of-type
:only-child

m

Meaning

any element

an element of type E

an E element with a “foo” attribute

an E element whose “foo” attribute
value is exactly equal to “bar” (quotes
are optional)

an E element whose “foo” attribute
value is a list of whitespace-
separated values, one of which is
exactly equal to “bar” (quotes are
optional)

an E element whose “foo” attribute
value begins with “bar” (quotes are
optional)

an E element whose “foo” attribute
value ends with “bar” (quotes are
optional)

an E element whose “foo” attribute
value contains “bar” somewhere
within it (quotes are optional)

an E element whose “foo” attribute
has a hyphen-separated list of values
beginning (from the left) with “en”
(quotes are optional)

an E element, root of the document

an E element, the nth child of its
parent

an E element, the nth child of its
parent, counting from the last one

an E element, the nth sibling of its
type

an E element, the nth sibling of its
type, counting from the last one

an E element, first child of its parent
an E element, last child of its parent
an E element, first sibling of its type
an E element, last sibling of its type

an E element, only child of its parent

CSS3? Selector Type

< =<|=<|=<

Universal selector
Type selector
Attribute selector

Attribute selector

Attribute selector

Attribute selector

Attribute selector

Attribute selector

Attribute selector

Structural pseudo-class

Structural pseudo-class

Structural pseudo-class

Structural pseudo-class

Structural pseudo-class

Structural pseudo-class
Structural pseudo-class
Structural pseudo-class
Structural pseudo-class
Structural pseudo-class

table continues on next page

B10 Appendix B

TABLE B.2 continued
Pattern
E:only-of-type
E:empty

m

:1link, E:visited

m

:focus, E:hover,
:active

m m

starget

m

:lang(fr)

m

:enabled, E:disabled

m

:checked

E::first-line

E::first-letter

E::before

E::after

E.warning

E#myid

E:not(s)

EF

E>F

E+F

Meaning
an E element, only sibling of its type

an E element that has no children
(including text nodes)

an E element being the source
anchor of a hyperlink of which the
target is not yet visited (:1ink) or
already visited (:visited)

an E element during certain user
actions

an E element being the target of the
referring URI

an element of type E in language “fr”

a user interface element E that is
enabled or disabled

a user interface element E that is
checked (for instance a radio button
or checkbox)

the first formatted line of an E
element

the first formatted letter of an E
element

generated content before an E
element

generated content after an E element
an E element that has a class of
"warning"

an E element with an ID equal to
“myid”

an E element that does not match
simple selector s (for example,
input:not(.warning))

an F element descendant of an E
element

an F element child of an E element

an F element immediately preceded
by an E element

an F element preceded by an E
element

CSS3? Selector Type

Y
Y

Structural pseudo-class

Structural pseudo-class

Link pseudo-classes

User action pseudo-classes

Target pseudo-class

:lang() pseudo-class

Ul element states pseudo-
classes

Ul element states pseudo-
classes

::first-line pseudo-element
s:first-letter pseudo-
element

::before pseudo-element

::after pseudo-element

Class selector

ID selector

Negation pseudo-class

Descendant combinator

Child combinator

Adjacent sibling combinator

General sibling combinator

CSS Properties and Values BM

CSS Color Values

TABLE B.3 CSS Color Values
Color Value

rgb(red-value, green-value,
blue-value)

rgba(red-value, green-value,
blue-value, alpha)

hsl(hue-value, saturation-value,
lightness-value)

hsla(hue-value, saturation-value,
lightness-value, alpha)

Description and Notes

RGB (red, green, blue) color model

values can be a number from O to 255 or a percentage (but not a
combination of numbers and percentages)

rgb(0, 0, 0) and rgb(0%, 0%, 0%) are black

rgb(255, 255, 255) and rgb(100%, 100%, 100%) are white

RGB color model, plus alpha transparency

color values are the same as for RGB syntax

the fourth parameter, alpha, is a decimal greater than or equal to
0.0 (full transparency) and less than or equal to 1.0 (full opacity)
HSL (hue, saturation, lightness) color model

the hue value is expressed as the angle of a color circle (a number
from O to 360); 0 and 360 = red, 120 = green, 240 = blue, with other
colors represented in between

the saturation value is expressed as a percentage; 0% is gray, and
100% is full saturation of the color

the lightness value is expressed as a percentage; 0% is black, 100%
is white, and 50% is “normal”

HSL color model, plus alpha transparency

color values are the same as for HSL syntax

the fourth parameter, alpha, is a decimal greater than or equal
to 0.0 (full transparency) and less than or equal to 1.0 (full opacity)

B12 Appendix B

Gradients

CSS3 offers two gradient styles, linear-gradient and radial-gradient, which can be used
as values for the background and background-image properties.

TABLE B.4 Gradients
Gradient Style*

linear-gradient([origin,]
color [stop], color [stop] [,
color [stop]]*)

for example:

linear-gradient(bottom
left, #fff, #fo0 30%, #000)

results in a gradient, originating
from the bottom left corner

of the box and ending at the
top right corner; it begins with
white, which becomes red 30%
of the way across the gradient,
which then ends at black

radial-gradient([origin,]
[shape-or-size-or-both,]
color [stop], color [stop] [,
color [stop]]*)

for example:

radial-gradient(30% 30%,
circle closest-corner, #fff,
#000)

results in a gradient originating
30% of the way from the top

left corner of the box, radiating
out as a circle until it reaches
the nearest corner of the box; it
starts with white in the center of
the circle, and ends with black
at the outer edge

Values

origin specifies the corner of the box
and can be a combination of top, left,
bottom, right, and center keywords or
percentage values (originating from the
top left) relative to the size of the box

the first color value refers to the color at
the start of the gradient; the last color
value refers to the end of the gradient;
you can have any number of colors in the
gradient

stop specifies the location of the color

in the gradient and can be a length or a
percentage relative to the length of the
entire gradient

origin specifies the corner of the box
and can be a combination of top, left,
bottom, right, and center keywords or
percentage values (originating from the
top left) relative to the size of the box

shape can be specified as circle or
ellipse by default; the shape fills the
dimensions of the box (so is an ellipse
unless the box is square)

size can be a keyword: closest-side,
closest-corner, farthest-side,
farthest-corner, contain, cover

Notes

by default, linear gradients
originate from the top center
of the box

by default, the browser
attempts to distribute colors
evenly across the gradient

if only two colors are
specified, the default stops
are 0% and 100%

by default, radial gradients
originate from the center of
the box

by default, the size keyword
is set to contain

by default, the browser
attempts to distribute colors
evenly across the gradient

if only two colors are
specified, the default stops
are 0% and 100%

size can also explicitly set the dimensions
of a radial gradient using a length value (or
two length values, if you want to set the
horizontal and vertical lengths separately)

the first color value refers to the color at
the start of the gradient; the last color
value refers to the end of the gradient;
you can have any number of colors in the
gradient

stop specifies the location of the color

in the gradient and can be a length or a
percentage relative to the length of the
entire gradient

* Earlier versions of WebKit (the rendering engine used in Chrome and Safari) used a different syntax for
gradients. For more information about this syntax, please see www.webkit.org/blog/1424/css3-gradients/.

CSS Properties and Values B13

www.webkit.org/blog/1424/css3-gradients/

Media Queries

A media query evaluates media types and features and is a logical expression that is either
true or false. In the standard syntax, use and to test multiple features together, and use
commas to test groups separately. For example, screen and (max-width:800px) is true

if the media type is screen and the display area is no wider than 800 pixels, but scxeen,
(max-width:800px) is true if either value is true.

The following table describes features that can be detected using media queries and the
values those features are tested against. Media queries can be specified as a part of an
@import rule, in an HTML <1ink> element’s media attribute, or as an @media rule.

TABLE B.5 Media Queries

Feature

width,
min-width,
max-width

alength
height,
min-height,
max-height

a length
device-width,

min-device-width,
max-device-width

a length
device-height,
min-device-height,
max-device-height

alength
orientation

portrait or landscape

aspect-ratio,
min-aspect-ratio,
max-aspect-ratio

a ratio (e.g., 4/3 or 16/9)

device-aspect-ratio

min-device-aspect-ratio,
max-device-aspect-ratio

a ratio (e.g., 4/3 or 16/9)

color,
min-color,
max-color

an integer

Description and Notes

the width, minimum width, or maximum width of the targeted display area
of the output device

applies to: visual and tactile media

the height, minimum height, or maximum height of the targeted display
area of the output device

applies to: visual and tactile media

the width, minimum width, or maximum width of the rendering surface of
the output device

applies to: visual and tactile media

the height, minimum height, or maximum height of the rendering surface
of the output device

applies to: visual and tactile media

the orientation is portrait when the height feature value is greater than
or equal to the value of the width feature value; otherwise, the orientation
is landscape

applies to: bitmap media
the ratio, minimum ratio, or maximum ratio of the width feature value to
the height feature value
applies to: bitmap media

the ratio, minimum ratio, or maximum ratio of the device-width feature
value to the device-height feature value

applies to: bitmap media

the number, minimum number, or maximum number of bits per color
component of the output device; the value is O if the device is not a color
device

applies to: visual media

table continues on next page

B14 Appendix B

TABLE B.5 continued
Feature

color-index,
min-color-index,
max-color-index

an integer
monochrome,

min-monochrome,
max-monochrome

an integer
resolution,

min-resolution,
max-resolution

a resolution value

(e.g., 300dpi or 118dpcm)
scan

progressive or interlace
grid

Oor1

Description and Notes

the number, minimum number, or maximum number of entries in the color
lookup table of the output device; the value is O if the device does not use
a color lookup table

applies to: visual media
the number, minimum number, or maximum number of bits per pixel

in a monochrome frame buffer; the value is O if the device is not a
monochrome device

applies to: visual media
the resolution, minimum resolution, or maximum resolution of the output

device (i.e., the pixel density); resolution (not min-resolution or max-
resolution) never detects a device with non-square pixels

applies to: bitmap media

the scanning process of TV output devices
applies to: TV media
whether the device is grid or bitmap; the value is 1if the output device

is grid-based (e.g., a TTY terminal); otherwise, the value is O; this media
query can also be expressed without a value (for example, @media grid)

applies to: visual and tactile media

CSS Font Embedd

ing

TABLE B.6 CSS Font Embedding
Syntax
@font-face {

font-family: "name of font";

src: url("path/to/font.ext")
format("format-type");

font-style: value;

font-weight: value;

(@font-face)
Description and Notes
beginning of rule

definition of the font family, which can then be referenced as a
value of the font-family property

identification of the source file (or files) for the font; when
specifying multiple sources, separate each value with a comma
the format should be embedded-opentype for .eot files, woff for
woff files, truetype for .ttf files, and svg for .svg files

specification of the embedded font’s style, using the same
syntax as the font-style property

specification of the embedded font’s weight, using the same
syntax as the font-weight property

closing of rule

V413HAV

CSS Properties and Values B15

V413HAV
Typewritten Text
V413HAV

THREE WAYS TO QUICKSTART

The ever popular Visual QuickStart Guide series is now available in
three formats to help you “Get Up and Running in No Time!”

VISuaL QUICKSTART GUIDE

Visual QuickStart Guide Books

The best-selling Visual QuickStart Guide series is
available in book and ebook (ePub and PDF) formats
PhOtOShO for people who prefer the classic learning experience.

doysoiond

21ND WASIA

ANN - LOUREKAS

a
H
3
]
H

ELAINE WEINM

Video QuickStart

Video QuickStarts offer the immediacy of streaming
video so you can quickly master a new application,
task, or technology. Each Video QuickStart offers
more than an hour of instruction and rich graphics to
demonstrate key concepts.

EI LSRRy OOkl R

IO

[

Enhanced Visual QuickStart Guide

Available on your computer and tablet, Enhanced

Visual QuickStart Guides combine the ebook with Video
QuickStart instruction to bring you the best of both
formats and the ultimate multimedia learning experience.

Visit us at: Peachpit.com/VQS

QUICKSTART

creat

ve

Unlimited online access to all Peachpit, Adobe

Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O'Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

SIGN UP TODAY

peachpit.com/creativeedge

and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we'll take care of the rest.

It's quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/

*Valid for all books, eBooks and video sales at www.Peachpit.com

Peachpit

	Table of Contents
	Acknowledgments
	Introduction
	HTML and CSS in Brief
	Progressive Enhancement: A Best Practice
	Is This Book for You?
	How This Book Works
	Companion Web Site

	Chapter 1 Web Page Building Blocks
	A Basic HTML Page
	Semantic HTML: Markup with Meaning
	Markup: Elements, Attributes, and Values
	A Web Page’s Text Content
	Links, Images, and Other Non-Text Content
	File Names
	URLs
	Key Takeaways

	Chapter 2 Working with Web Page Files
	Planning Your Site
	Creating a New Web Page
	Saving Your Web Page
	Specifying a Default Page or Homepage
	Editing Web Pages
	Organizing Files
	Viewing Your Page in a Browser
	The Inspiration of Others

	Chapter 3 Basic HTML Structure
	Starting Your Web Page
	Creating a Title
	Creating Headings
	Understanding HTML5’s Document Outline
	Grouping Headings
	Common Page Constructs
	Creating a Header
	Marking Navigation
	Creating an Article
	Defining a Section
	Specifying an Aside
	Creating a Footer
	Creating Generic Containers
	Improving Accessibility with ARIA
	Naming Elements with a Class or ID
	Adding the Title Attribute to Elements
	Adding Comments

	Chapter 4 Text
	Starting a New Paragraph
	Adding Author Contact Information
	Creating a Figure
	Specifying Time
	Marking Important and Emphasized Text
	Indicating a Citation or Reference
	Quoting Text
	Highlighting Text
	Explaining Abbreviations
	Defining a Term
	Creating Superscripts and Subscripts
	Noting Edits and Inaccurate Text
	Marking Up Code
	Using Preformatted Text
	Specifying Fine Print
	Creating a Line Break
	Creating Spans
	Other Elements

	Chapter 5 Images
	About Images for the Web
	Getting Images
	Choosing an Image Editor
	Saving Your Images
	Inserting Images on a Page
	Offering Alternate Text
	Specifying Image Size
	Scaling Images with the Browser
	Scaling Images with an Image Editor
	Adding Icons for Your Web Site

	Chapter 6 Links
	The Anatomy of a Link
	Creating a Link to Another Web Page
	Creating Anchors
	Linking to a Specific Anchor
	Creating Other Kinds of Links

	Chapter 7 CSS Building Blocks
	Constructing a Style Rule
	Adding Comments to Style Rules
	The Cascade: When Rules Collide
	A Property’s Value

	Chapter 8 Working with Style Sheets
	Creating an External Style Sheet
	Linking to External Style Sheets
	Creating an Embedded Style Sheet
	Applying Inline Styles
	The Importance of Location
	Using Media-Specific Style Sheets
	Offering Alternate Style Sheets
	The Inspiration of Others: CSS

	Chapter 9 Defining Selectors
	Constructing Selectors
	Selecting Elements by Name
	Selecting Elements by Class or ID
	Selecting Elements by Context
	Selecting Part of an Element
	Selecting Links Based on Their State
	Selecting Elements Based on Attributes
	Specifying Groups of Elements
	Combining Selectors
	Selectors Recap

	Chapter 10 Formatting Text with Styles
	Choosing a Font Family
	Specifying Alternate Fonts
	Creating Italics
	Applying Bold Formatting
	Setting the Font Size
	Setting the Line Height
	Setting All Font Values at Once
	Setting the Color
	Changing the Text’s Background
	Controlling Spacing
	Adding Indents
	Setting White Space Properties
	Aligning Text
	Changing the Text Case
	Using Small Caps
	Decorating Text

	Chapter 11 Layout with Styles
	Considerations When Beginning a Layout
	Structuring Your Pages
	Styling HTML5 Elements in Older Browsers
	Resetting or Normalizing Default Styles
	The Box Model
	Changing the Background
	Setting the Height or Width for an Element
	Setting the Margins around an Element
	Adding Padding around an Element
	Making Elements Float
	Controlling Where Elements Float
	Setting the Border
	Offsetting Elements in the Natural Flow
	Positioning Elements Absolutely
	Positioning Elements in 3D
	Determining How to Treat Overflow
	Aligning Elements Vertically
	Changing the Cursor
	Displaying and Hiding Elements

	Chapter 12 Style Sheets for Mobile to Desktop
	Mobile Strategies and Considerations
	Understanding and Implementing Media Queries
	Building a Page that Adapts with Media Queries

	Chapter 13 Working with Web Fonts
	What Is a Web Font?
	Where to Find Web Fonts
	Downloading Your First Web Font
	Working with @font-face
	Styling Web Fonts and Managing File Size

	Chapter 14 Enhancements with CSS3
	Understanding Vendor Prefixes
	A Quick Look at Browser Compatibility
	Using Polyfills for Progressive Enhancement
	Rounding the Corners of Elements
	Adding Drop Shadows to Text
	Adding Drop Shadows to Other Elements
	Applying Multiple Backgrounds
	Using Gradient Backgrounds
	Setting the Opacity of Elements

	Chapter 15 Lists
	Creating Ordered and Unordered Lists
	Choosing Your Markers
	Choosing Where to Start List Numbering
	Using Custom Markers
	Controlling Where Markers Hang
	Setting All List-Style Properties at Once
	Styling Nested Lists
	Creating Description Lists

	Chapter 16 Forms
	Creating Forms
	Processing Forms
	Sending Form Data via Email
	Organizing the Form Elements
	Creating Text Boxes
	Creating Password Boxes
	Creating Email, Telephone, and URL Boxes
	Labeling Form Parts
	Creating Radio Buttons
	Creating Select Boxes
	Creating Checkboxes
	Creating Text Areas
	Allowing Visitors to Upload Files
	Creating Hidden Fields
	Creating a Submit Button
	Using an Image to Submit a Form
	Disabling Form Elements
	New HTML5 Features and Browser Support

	Chapter 17 Video, Audio, and Other Multimedia
	Third-Party Plugins and Going Native
	Video File Formats
	Adding a Single Video to Your Web Page
	Exploring Video Attributes
	Adding Controls and Autoplay to Your Video
	Looping a Video and Specifying a Poster Image
	Preventing a Video from Preloading
	Using Video with Multiple Sources
	Multiple Media Sources and the Source Element
	Adding Video with Hyperlink Fallbacks
	Adding Video with Flash Fallbacks
	Providing Accessibility
	Adding Audio File Formats
	Adding a Single Audio File to Your Web Page
	Adding a Single Audio File with Controls to Your Web Page
	Exploring Audio Attributes
	Adding Controls and Autoplay to Audio in a Loop
	Preloading an Audio File
	Providing Multiple Audio Sources
	Adding Audio with Hyperlink Fallbacks
	Adding Audio with Flash Fallbacks
	Adding Audio with Flash and a Hyperlink Fallback
	Getting Multimedia Files
	Considering Digital Rights Management (DRM)
	Embedding Flash Animation
	Embedding YouTube Video
	Using Video with Canvas
	Coupling Video with SVG
	Further Resources

	Chapter 18 Tables
	Structuring Tables
	Spanning Columns and Rows

	Chapter 19 Working with Scripts
	Loading an External Script
	Adding an Embedded Script
	JavaScript Events

	Chapter 20 Testing & Debugging Web Pages
	Trying Some Debugging Techniques
	Checking the Easy Stuff: General
	Checking the Easy Stuff: HTML
	Checking the Easy Stuff: CSS
	Validating Your Code
	Testing Your Page
	When Images Don’t Appear
	Still Stuck?

	Chapter 21 Publishing Your Pages on the Web
	Getting Your Own Domain Name
	Finding a Host for Your Site
	Transferring Files to the Server

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Appendix A
	Appendix B

